我们看看这个实验结果,图上蓝色和紫色分别对应基于卷积神经网络、 LSTM处理得到的结果。下面有一条横线对应的是随机猜测,上面一条横线对应的是人的水平。第一个图的DBA任务,我们可以看到,如果长度在12位以内,神经网络比人做得好。但是长度超过12位,人比这些神经网络要强。橙色部分是反绎学习的结果,通过把机器学习跟逻辑推理结合起来之后,在这个任务上比一般人做得好。右边的RBA任务情况类似,在这个更困难的任务上,随着串长度的增加,所有方法的性能都在下降,但是基于反绎学习的方法还是比人的水平高一些。
实验里这个简单任务本身并不重要,重要的是显示出把机器学习和逻辑推理以”相对均衡”的反绎学习方式结合起来,虽然仅用了很简单的实现,就焕发出令人兴奋的能力。今后如果设计出更精致、巧妙的实现方式,可能会给我们带来更多惊喜。
大家感兴趣的话,上面第一篇文献是发表在中国科学上的文章,跳出细节来描述整个框架,很容易读。第二个是描述了刚才的这个具体实现。
最后做一个简单的小结和展望:我们现在经常在谈数据、算法和算力三要素,未来或许应该考虑进知识这个要素,知识凝聚了人类积累的智慧。过去十几年,我们都是从数据驱动的角度来研究人工智能,现在可能是时候把数据驱动和知识驱动结合起来了。我们的这个工作只是非常粗浅的初步探索,这里的研究空间很大,大家如果有兴趣,相信会在这方面做出更好的工作。谢谢!
P.S:演讲结束后,周志华教授还为《机器学习理论导引》以及《集成学习:基础与算法》两本新书举行了签售会,两本书分别出版于2020年6月和8月,前者为有志于机器学习理论学习和研究的读者提供一个入门导引,后者则系统性地阐述了集成学习,两本书在签售会现场引起读者和现场观众的积极反响。