其中 ε_t 是残差序列;a_1,……,a_p 为回归系数。该时间序列的特征方程(characteristic equation)为:
如果 m = 1 是该特征方程的一个解,则称该时间序列存在单位根。
3.2 单整阶数
单整阶数(order of integration)是和单位根密切相关的一个概念。在时间序列特征方程的解中,如果 m = 1 是一个单重根(即在特征方程的所有解中,m = 1 这个解仅出现一次),那么该时间序列是一阶单整的(integrated of order one,记为 I(1));如果 m = 1 是一个多重根(重数为 d),则该时间序列是 d 阶单整的(记为 I(d))。
单整阶数在实际中的含义是什么呢?对于一个非平稳的时间序列,我们总可以捅过差分把它变成平稳的;差分的次数就是单整阶数。如果一个时间序列经过一次差分就变成平稳的,那么它就是一阶单整的;如果一个时间序列需要通过 d 次差分才能变成平稳的,那么它就是 d 阶单整的。
对于我们熟悉的股票价格序列,它的一阶差分为股票的收益率;由于收益率满足平稳性,因此股票价格序列是一阶单整的。
3.3 ADF 检验
从上面的介绍可知,要想判断一个时间序列是否满足平稳性,核心就是看它有没有单位根。为此,可以采用 ADF 检验(全称为 Augmented Dickey-Fuller test)。将 {y_t} 的自回归函数转化为 y_t 增量 Δy_t 的形式:
在上式中,如果时间序列 {y_t} 存在单位根,则 λ = 0。ADF 检验的原假设是 λ = 0、备择假设是 λ < 0。
ADF 检验
原假设为 {y_t} 存在单位根,即 λ = 0。该检验的统计量是λ和它自身标准误差之比,λ/SE(λ)。如果 {y_t} 满足平稳性,则 λ/SE(λ) 显著为负。因此只有当这个统计量小于给定显著性水平的阈值(阈值是负数)时,我们才能在对应的置信水平下拒绝原假设、接受备择假设,备择假设为 {y_t} 不存在单位根、即满足平稳性。
对于回归分析得到的残差序列,通过 ADF 检验考察其是否存在单位根。如果能够在给定的显著性水平下拒绝原假设,则可以认为残差序列满足平稳性,从而推断出回归分析得到的相关性可信、没有发生伪回归。
4 协整 —— 处理非平稳时间序列的利器在量化投资领域,收益率序列满足平稳性,而价格序列不满足平稳性。收益率满足平稳性仅仅说明价格呈现随机游走,它对于构建赚钱的投资策略几乎没有什么用。我们想要的是价格序列呈现出平稳性。
不幸的是,现实中投资品价格基本上都呈现(几何)布朗运动(见《布朗运动、伊藤引理、BS 公式》系列文章)。这意味着投资品的价格均不满足平稳性的要求,因此如果我们想用其他数据 —— 比如宏观经济数据 —— 来预测投资品价格(比如上证指数)的走势就没什么意义,因为会发生伪回归。
好消息是,这里有一个例外:虽然单一投资品的价格不满足平稳性,但有时我们可以把多个投资品(通常是两个)线性组合在一起构成一个价差序列,而这个价差序列满足平稳性。
在数学上,如果多个非平稳的时间序列通过线性组合得到一个平稳的时间序列,则把满足这种关系称为协整(co-integration)。为什么会发生协整的?考虑两个投资品的价格序列为 {X_1t} 和 {X_2t},它们的走势可以表述为:
其中 ε_1i 和 ε_2i,i = 1,……,t 为构成 X_1t 和 X_2t 的随机过程。假设这两个价格序列的一个线性组合为: