在达朗贝尔之后,无数数学家开始向第五公设发起了冲锋,试图将它攻陷。
18世纪初,意大利的萨凯里提出用归谬法试图证明第五公设,萨凯里从四边形开始,如果角A和角B是直角,且AC=BD,容易证明角C等于角D,这样第五公设便等价于角C和角D是直角这个论断。萨凯里还提出了钝角和锐角的假设,但是因为与经验认识违背,萨凯里最终选择放弃了最后结论。
瑞士数学家兰伯特也采用了萨凯里的求证思路,他也考察了一类四边形,其中3个角为直角,而第四个角有三种可能性:锐角,直角,钝角。之后兰贝特否定了钝角假设,也没有轻率地做出锐角假设导致矛盾的结论。
兰伯特
他在此基础上进行了大胆的猜想:如果过直线外一点如果没有直线与之平行或者不止一条直线与之平行的情况下,也许存在可能的几何学而不产生矛盾。
兰伯特和萨凯里都走到了非欧几何的门槛,尤其萨凯里提出的对于锐角的假设是成立的,他后来成为了罗巴切夫斯基几何(双曲几何)的基础之一但是因为时代的原因,最终没有迈过去。
第五公设问题到了高斯手里,才算取得突破,高斯15岁的时候就饶有兴致地思索起了这个困扰了数学界近两千年的难题。他亲自做了实地测量,来讨论我们生存的空间是否存在有非欧几何性质的可能性,从而用新的几何思想解决第五公设难题。
到1813年,高斯已经形成了一套关于新几何的思想,他称之为“反欧几里得几何”后来又改称“非欧几里得几何”。并且坚信这种新几何在逻辑上也是相容的,且有广阔的应用前景。但高斯是个较为保守和谨慎的数学家,也忧心那些顽固分子会对这一发现展开攻击,所以生前并未公开发表这一成果。