布朗运动正态分布,布朗型随机运动公式

首页 > 上门服务 > 作者:YD1662023-11-22 16:22:22

我们会在后续的文章中进一步介绍这些风险敞口。

除此之外,BS 公式的另一个核心作用是计算标的资产的隐含波动率。在 BS 公式中,除去 σ 之外的输入参数的取值都比较确定,唯有 σ 可能会随着使用者的不同而不同。根据期权的实际交易价格,可以利用 BS 公式反推出标的波动率 σ,称为隐含波动率,这往往代表着市场对于标的资产风险的普遍观点。隐含波动率最有名的应用大概是芝加哥交易所针对标普 500 指数,利用未来 30 天的看涨和看跌期权计算的 VIX 指标,又称为恐慌指数。它被投资者广泛参考。

7 小结

和本系列前篇一样,再次恭喜你看到这里……下面,让我们来简单总结一下本文都说了点啥。

本文首先定义了伊藤过程,并给出了伊藤引理的一般形式,通过它可以方便的写出伊藤过程的函数的随机微分方程。伊藤引理说明伊藤过程的函数也是一个伊藤过程,且它的随机性和原始的伊藤过程来自同一个布朗运动,这对于推演 BS 微分方程至关重要。

利用伊藤引理,可以很容易的求解几何布朗运动,从而得到股价的描述模型。在几何布朗运动的假设下,股价满足对数正态分布,这也是 BS 定价模型的假设之一。在股价模型中,年收益率期望和连续复利收益率期望是两个不同的概念,它们的区别相当于收益率序列的算数平均值和几何平均值的区别。

最后利用 Delta 对冲,利用标的股票和期权构建投资组合从而完美的消除了布朗运动的随机性,从而得到了 BS 微分方程,这是衍生品定价的基础。此外,在 Delta 对冲下,和投资者风险偏好相关的参数 μ 也从 BS 方程中消失了。由此引出了衍生品定价中的一个非常重要的方法:风险中性定价理论。根据该理论求出了欧式期权的价格,并以看涨期权为例解释了价格表达式中每一项的业务含义。文章最后介绍了 BS 公式在实际投资中的核心作用:它可以量化期权的各种风险敞口,这对于配置期权的投资者至关重要。

上一页23456末页

栏目热文

文档排行

本站推荐

Copyright © 2018 - 2021 www.yd166.com., All Rights Reserved.