连续x射线特征,x射线的基本五大特征

首页 > 上门服务 > 作者:YD1662024-01-07 12:23:43

编辑

添加图片注释,不超过 140 字(可选)

连续x射线特征,x射线的基本五大特征(5)

编辑

添加图片注释,不超过 140 字(可选)

~3

连续x射线特征,x射线的基本五大特征(6)

编辑

添加图片注释,不超过 140 字(可选)

连续x射线特征,x射线的基本五大特征(7)

编辑

添加图片注释,不超过 140 字(可选)

范围内倾斜。

8、成像系统的主要构成及其特点是什么?

成像系统组要是由物镜、中间镜和投影镜组成。

1)物镜是用来形成第一幅高分辨率电子显微镜图像或电子衍射花样。透射电镜分辨率的高低主要取决于物镜,因为物镜的任何缺陷都将被成像系统中其他透镜进一步放大,欲获得物镜的高分辨率,必须尽可能降低像差。物镜是采用强激磁、短焦距的透镜(f=1~3mm),它的放大倍数较高,一般为100~300倍。

2)中间镜是一个弱激磁的长焦距变倍透镜,可在0~20倍范围调节。当放大倍数大于1时,用来进一步放大物像;当放大倍数小于1时,用来缩小物镜像。

3)投影镜的作用是把中间镜放大(或缩小)的像(或电子衍射花样)进一步放大,并投影到荧光屏上,它和物镜一样,是一个短焦距的强激磁透镜。投影镜的激磁电流是固定的,因为成像电子束进入投影镜时孔径角很小,因此它的景深和焦长都非常大。

观察记录系统

包括荧光屏和照相结构,电子显微镜工作时,整个电子通道都必须置于真空系统之内

9、分别说明成像操作和衍射操作时各级透镜(像平面和物平面)之间的相对位置关系,并画出光路图。

如果把中间镜的物平面和物镜的像平面重合,则在荧光屏上得到一幅放大像,这是成像操作。

如果把中间镜的物平面和物镜的背焦面重合,则在荧光屏上得到一幅电子衍射花样,这是电子衍射操作。

图在课本P144

10、透射电镜中有哪些主要光阑,在什么位置?其作用如何?

1)在透射电镜中主要有三种光阑:聚光镜光阑、物镜光阑、选区光阑。

2)聚光镜光阑装在第二聚光镜的下方,其作用是限制照明孔径角。

物镜光阑安放在物镜的后焦面上,其作用是使物镜孔径角减小,能减小像差,得到质量较高的显微图像;在后焦面上套取衍射束的斑点成暗场像。

选区光阑放在物镜的像平面位置,其作用时对样品进行微小区域分析,即选区衍射。

11、如何测定透射电镜的分辨率与放大倍数。电镜的哪些主要参数控制着分辨率与放大倍数?

点分辨率的测定:将铂、铂-铱或铂-钯等金属或合金,用真空蒸发的方法可以得到粒度为0.5-1nm、间距为0.2-1nm的粒子,将其均匀地分布在火棉胶(或碳)支持膜上,在高放大倍数下拍摄这些粒子的像。为了保证测定的可靠性,至少在同样条件下拍摄两张底片,然后经光学放大5倍左右,从照片上找出粒子间最小间距,除以总放大倍数,即为相应电子显微镜的点分辨率。

晶格分辨率的测定:利用外延生长方法制得的定向单晶薄膜作为标样,拍摄其晶格像。根据仪器分辨率的高低,选择晶面间距不同的样品作标样。

放大倍数的测定:用衍射光栅复型作为标样,在一定条件下,拍摄标样的放大像。然后从底片上测量光栅条纹像的平均间距,与实际光栅条纹间距之比即为仪器相应条件下的放大倍数。

影响参数:样品的平面高度、加速电压、透镜电流

12. 说明影响光学显微镜和电磁透镜分辨率的关键因素是什么?如何提高电磁透镜的分辨率?

1)光学显微镜d=0.61λ/(nsinα) l对于光学显微镜而言,由于nsinα的增加十分有限。因此,减小λ是提高显微镜分辨本领的关键因素。

2)电磁透镜分辨极限d=0.61λ/α 增大电磁透镜孔径半角,可以使d减小,但将引起球差急剧增大;提高电镜工作电压u,可以使λ降低,从而提高电磁透镜的分辨率。

13.透射电镜的应用

主要研究材料的形貌,内部组织结构和晶体缺陷的观察以及物相鉴定。

14、分析电子衍射与x射线衍射有何异同?

相同点:

1).都是以满足布拉格方程作为产生衍射的必要条件。

2).两种衍射技术所得到的衍射花样在几何特征上大致相似。

不同点:

1).电子波的波长比x射线短的多。

2).在进行电子衍射操作时采用薄晶样品,增加了倒易阵点和爱瓦尔德球相交截的机会,使衍射条件变宽。

3).因为电子波的波长短,采用爱瓦尔德球图解时,反射球的半径很大,在衍射角θ较小的范围内反射球的球面可以近似地看成是一个平面,从而也可以认为电子衍射产生的衍射斑点大致分布在一个二维倒易截面内。

4).原子对电子的散射能力远高于它对x射线的散射能力,故电子衍射束的强度较大,摄取衍射花样时曝光时间仅需数秒钟。

15、什么是电子衍射?它满足什么方程?电子衍射的基本公式。

1)电子衍射是指当一定能量的电子束落到晶体上时,被晶体中原子散射,各散射电子波之间产生互相干涉现象。

2)它满足劳厄方程或布拉格方程,并满足电子衍射的基本公式Lλ=Rd L是相机长度,λ为入射电子束波长,R是透射斑点与衍射斑点间的距离。

16、用爱瓦尔德团解法证明布拉格定律

在倒易空间中,画出衍射晶体的倒易点阵,以倒易原点0*为端点做入射波的波矢量k(00*),该矢量平行于入射束的方向,长度等于波长的倒数,即K=1/入

以0为中心,1/入为半径做一个球(爱瓦尔德球),根据倒易矢量的定义0*G=g,于是k’-k=g.由0向0*G作垂线,垂足为D,因为g平行于(hkl)晶面的法向Nhkl,所以OD就是正空间中(hkl)晶面的方面,若它与入射束方向夹角为斯塔,则

O*D=OO*sin(斯塔)即g/2=ksin(斯塔);g=1/d k=1/入 所以2dsin(斯塔)=入 图为163上的

17、何为零层倒易面和晶带定理?说明同一晶带中各晶面及其倒易矢量与晶带轴之间的关系。

1)由于晶体的倒易点阵是三维点阵,如果电子束沿晶带轴[uvw]的反向入射时,通过原点O的倒易平面只有一个,我们把这个二维平面叫做零层倒易面.

因为零层倒易面上的倒易面上的各倒易矢量都和晶带轴r=[uvw]垂直,故有g.r=0即hu kv lw=0这就是晶带定理. 如图12.5

18.说明多晶、单晶及非晶衍射花样的特征及形成原理。

1)多晶体的电子眼奢华样式一系列不同班静的同心圆环

2)单晶衍射花样是由排列得十分整齐的许多斑点所组成的

3)非晶态物质的衍射花样只有一个漫散中心斑点

单晶花样是一个零层二维倒易截面,其倒易点规则排列,具有明显对称性,且处于二维网络的格点上。因此表达花样对称性的基本单元为平行四边形。单晶电子衍射花样就是(uvw)*0零层倒易截面的放大像。

多晶试样可以看成是由许多取向任意的小单晶组成的。故可设想让一个小单晶的倒易点阵绕原点旋转,同一反射面hkl的各等价倒易点(即(hkl)平面族中各平面)将分布在以1/dhkl为半径的球面上,而不同的反射面,其等价倒易点将分布在半径不同的同心球面上,这些球面与反射球面相截,得到一系列同心园环,自反射球心向各园环连线,投影到屏上,就是多晶电子衍射图。

非晶的衍射花样为一个圆斑

19、制备薄膜样品的基本要求是什么,具体工艺过程如何?双喷减薄与离子减薄各用于制备什么样品?

1)要求:

薄膜样品的组织结构必须和大块样品相同,在制备的过程中,这些组织结构不发生变化。

样品相对电子束而言必须有足够的“透明度”,因为只有样品能被电子束透过,才有可能进行观察分析。

薄膜样品应有一定的强度和刚度,在制备的、夹持和操作过程中,在一定的机械力作用下不会引起变形或损坏。4.在样品的制备过程中不允许表面产生氧化和腐蚀。氧化和腐蚀会是样品的透明度下降,并造成多种假象。

2)工艺过程:

从实物或大块试样上切割厚度为0.3~0.5mm厚的薄片。导电样品用电火花线切割法;对于陶瓷等不导电样品可用金刚石刃内圆切割机。

样品薄片的预先减薄。有两种方法:机械阀和化学法。

最终减薄。金属试样用双喷电解抛光。对于不导电的陶瓷薄膜样品,可采用如下工艺。首先用金刚石刃内切割机切片,再进行机械研磨,最后采用离子减薄。

3)金属试样用双喷电解抛光。不导电的陶瓷薄膜样品离子减薄。

20.画图说明衍射成像的原理并说明什么是明场像,暗场像与中心暗场像

190页图13.3

明场像:让透射束透过物镜光阑而把衍射束当掉的图像。

暗场像:移动物镜光阑的位置,使其光阑孔套住hkl斑点把透射束当掉得到的图像。

中心暗场像:当晶粒的hkl衍射束正好通过光阑孔而投射束被当掉所得到的图像。

21.什么是衍射衬度?它与质厚衬度有什么区别?

由于样品中不同位相的衍射条件不同而造成的衬度差别叫衍射衬度。

它与质厚衬度的区别:

质厚衬度是建立在原子对电子散射的理论基础上的,而衍射衬度则是利用电子通过不同位相晶粒是的衍射成像原理而获得的衬度,利用了布拉格衍射角。

质厚衬度利用样品薄膜厚度的差别和平均原子序数的差别来获得衬度,而衍射衬度则是利用不同晶粒的警惕学位相不同来获得衬度。

质厚衬度应用于非晶体复型样品成像中,而衍射衬度则应用于晶体薄膜样品成像中。

22.电子束入射固体样品表面会激发哪些信号?它们有哪些特点和用途?

电子束入射固体样品表面会激发出背散射电子,二次电子,吸收电子,透射电子,特征X射线,俄歇电子六种。

(1)背散射电子是固体样品中的原子核反弹回来的部分入射电子,它来自样品表层几百纳米的深度范围。由于它的产额能随样品原子序数增大而增大,所以不仅能用做形貌分析,而且可以用来显示原子序数的衬度,定性地用做成分分析。

(2)二次电子是在入射电子束作用下被轰击出来离开样品表面的核外电子。它来自表层5~10nm的深度范围内,它对样品表面形貌十分敏感,能用来非常有效的显示样品的表面形貌。

(3)吸收电子是非散射电子经多次弹性散射之后被样品吸收的部分,它能产生原子序数衬度,同样也可以用来进行定性的微区成分分析。

(4)透射电子是入射电子穿过薄样品的部分,它的信号由微区的厚度,成分和晶体结构来决定。可以利用特征能量损失电子配合电子能量分析器进行微区成分分析。

(5)特征X射线由样品原子内层电子被入射电子激发或电离而成,可以用来判定微区存在的元素。

(6)俄歇电子是由内层电子能级跃迁所释放的能量将空位层的外层电子发射出去而产生的,平均自由程很小,只有1nm左右,可以用做表面层成分分析。

23.扫描电镜的分辨率受哪些因素影响,用不同的信号成像时,其分辨率有何不同?

电子束束斑大小,检测信号的类型,检测部位的原子序数是影响扫描电镜分辨率的三大因素。用不同信号成像,其分辨率相差较大,列表说明:

信号

二次电子

背散射电子

吸收电子

特征X射线

俄歇电子

分辨率(nm)

5~10

50~200

100~1000

100~1000

5~10

24 所谓扫描电镜的分辨率是指用何种信号成像时的分辨率?

二次电子。

25.扫描电镜的成像原理与透时电镜有何不同?

两者完全不同。投射电镜用电磁透镜放大成像,而扫描电镜则是以类似电视机摄影显像的方式,利用细聚焦电子束在样品表面扫描时激发出的各种物理信号来调制而成。

26.二次电子像和背散射电子像在显示表面形貌衬度时有何相同与不同之处?

相同处:均利用电子信号的强弱来行成形貌衬度

不同处:1、背散射电子是在一个较大的作用体积内被入射电子激发出来的,成像单元较大,因而分辨率较二次电子像低。

2、背散射电子能量较高,以直线逸出,因而样品背部的电子无法被检测到,成一片阴影,衬度较大,无法分析细节;利用二次电子作形貌分析时,可以利用在检测器收集光栅上加上正电压来吸收较低能量的二次电子,使样品背部及凹坑等处逸出的电子以弧线状运动轨迹被吸收,因而使图像层次增加,细节清晰。

27.二次电子像景深很大,样品凹坑底部都能清楚地显示出来,从而使图像的立体感很强,其原因何在?

用二次电子信号作形貌分析时,在检测器收集栅上加以一定大小的正电压(一般为250-500V),来吸引能量较低的二次电子,使它们以弧线路线进入闪烁体,这样在样品表面某些背向检测器或凹坑等部位上逸出的二次电子也对成像有所贡献,图像景深增加,细节清楚。

相同点:

都有电子枪、电磁透镜、光阑和样品室等部件。

扫描电镜中的电磁透镜不作成像透镜用,而是用作聚光镜,其功能只是把电子枪的束斑逐级聚焦缩小,一般能够将50μm大小的束斑缩小成只有几个nm大小。

扫描电镜中一般有三个聚光镜,其中,靠近试样的透镜称为物镜。

不同点:扫描电镜中还有一个扫描线圈,也称为偏转线圈。

作用:使电子束偏转,并在样品表面作有规则的扫动。通常,要求电子束在样品表面的扫描动作和显像管上的扫描动作保持严格同步。

扫描电镜电子光学系统的主要作用:产生束斑细小的电子束,并在偏转线圈的作用下进行光栅扫描。

AES

1) 基本原理

俄歇电子谱(AES)主要用于研究≤2nm尺度的表面成分与状态

入射电子对试样内电子发生非弹性散射碰撞,内电子被激发到真空能级产生电离,在内电子能级上形成空穴。(原子内层电子被击出,外层电子向该层跃迁,其能量被相邻电子吸收而激发成自由电子的现象。)

用来进行分析的俄歇电子,应当是能量无损地输运到表面的电子,因而只能是在深度很浅处产生的,这就是用俄歇谱能进行表面分析的原因。

原子在载能粒子(电子、离子或中性粒子)或X射线的照射下,内层电子可能获得足够的能量而电离,并留下空穴(受激)。当外层电子跃入内层空位时,将释放多余的能量(退激)释放的方式可以是:发射X射线(辐射跃迁退激方式);发射第三个电子─ 俄歇电子(俄歇跃迁退激方式)。

(书)高能电子束和固体样品作用时,当原子内壳层电子因电离激发而留下一个空位时,由较外层电子向这一能级跃迁使原子释放能量的过程中,可以发射一个具有特征能量的X射线光子,也可以将这部分能量交给另外一个外层电子引起进一步的电离,从而发射一个具有特征能量的俄歇电子。检测俄歇电子的能量和强度,可以获得有关表层的化学成分的定性或定量信息,这就是俄歇电子能谱仪的基本分析原理。

2)俄歇电子能谱法的应用

应用

压力加工和热处理后的表面偏析

金属和合金的晶界脆断

①材料表面偏析、表面杂质分布、晶界元素分析;

②金属、半导体、复合材料等界面研究;

③薄膜、多层膜生长机理的研究;

④表面的力学性质(如摩擦、磨损、粘着、断裂等)研究;

⑤表面化学过程(如腐蚀、钝化、催化、晶间腐蚀、氢脆、氧化等)研究;

⑥集成电路掺杂的三维微区分析;

⑦固体表面吸附、清洁度、沾染物鉴定等。、

应用:

由于俄歇电子能谱具有很高的表面灵敏度,采样深度为1-3nm,因此非常适用于研究固体表面的化学吸附和化学反应。

其适用于很薄的膜以及多层膜的厚度测定。

通过俄歇电子的深度剖析,可以对截面上各元素的俄歇线形研究,获得界面

产物的化学信息,鉴定界面反应产物

3)俄歇电子能谱法的优点:

①作为固体表面分析法,其信息深度取决于俄歇电子逸出深度(电子平均自由程)。对于能量为50eV~2keV范围内的俄歇电子,逸出深度为0.4~2nm。深度分辨率约为1nm,横向分辨率取决于入射束斑大小。

②可分析除H、He以外的各种元素。

③对于轻元素C、O、N、S、P等有较高的分析灵敏度。

④可进行成分的深度剖析或薄膜及界面分析。

4)局限性

①不能分析氢和氦元素;

②定量分析的准确度不高;

③对多数元素的探测灵敏度为原子摩尔分数0.1%~1.0%;

④电子束轰击损伤和电荷积累问题限制其在有机材料、生物样品和某些陶瓷材料中的应用;

⑤对样品要求高,表面必须清洁(最好光滑)等。

STM扫描隧道显微镜

1)工作原理

隧道效应

一般来说,带偏压的两个平板导体间只要不接触不会有电流流过。

但是当这两个导电平板靠得很近,相隔小于1nm时,即使不接触,也会产生电流。

电子像穿过中间的隧道一般形成电流,因此称为隧道电流。

电子像穿过中间的隧道一般形成电流,因此称为隧道电流。

这种隧道电流随着间距的减少呈指数上升。这种现象就是量子力学中的隧道效应。

2)工作模式

恒流模式

在图像扫描时利用反馈回路控制针尖和样品之间的距离不断变化来保持隧道电流恒定,从而得到样品表面起伏的原子图像。恒流模式可以用于观察表面形貌起伏较大的样品。

恒高模式

始终控制针尖的高度不变,取出扫描过程中针尖和样品之间的电流变化信息来绘制样品表面的原子像。只能用于观察表面形貌起伏不大的样品。但获得图像速度比恒流模式快。

其他工作模式:

I(Z)谱测量:通过改变针尖的高度得到的一系列的隧道电流而形成的曲线。I(Z)谱可检测针尖的质量。

I(V)谱测量:断开反馈回路,固定针尖位置,通过一系列不同的偏压下得到的隧道电流而形成的曲线。

势垒高度图象:对针尖Z方向的压电管加一交流电压从而调制针尖与样品的距离,可根据调制的信号得到dI/dZ在表面形成的图象。该图象提供了样品表面的微观功函数的空间分布。

电子态密度图象:在扫描过程中,偏压V以dU调制,从而得到调制后的隧道电流dI,这样dI/dV在表面形成的图象就反应了样品表面的电子态密度分布。

3)STM的优点

具有原子级高分辨率。

可实时地得到在实空间中表面的三维图象。

可观察单个原子层的局部表面结构。

可在真空、大气、常温等不同环境下工作,并且探测过程对样品无损伤。

4)STM的局限性

STM的恒流工作模式下,有时对样品表面微粒之间的某些沟槽不能够准确探测,与此相关的分辨率较差。

只能观察样品表面,不能探测样品的深层信息。

对探针的制备技术要求很高。实验的成功率在很大程度上依赖于操作者的经验和机遇。

探针扫描范围小(微米范围),难以对观察点精确定位。

样品必须具有一定程度的导电性。

原子力显微镜(AFM)

1)工作原理

原子力显微镜利用原子力来实现显微观察,与导电无关。克服了STM不能测量不导电样品的缺点,实现了对绝缘体原子级的观察。

利用一个对微弱力极敏感的微悬臂,其末端有一微小的针尖,由于针尖尖端原子与样品表面原子间存在极微弱的力,这力使微悬臂发生偏离。用激光检测法测得微悬臂对应于扫描各点的偏离量,从而可以获得样品的表面形貌的信息。

2)工作模式

接触模式

探针与样品表面紧密接触并在表面滑动。针尖与样品之间的相互作用力是两者相接触原子间的排斥力。靠这种排斥力获得图像。通过反馈系统控制样品的上下(z方向)移动,改变探针与样品距离,以保持排斥力不变,同时在样品的水平面(x,y平面)内做二维扫描,从而可以获得样品的表面形貌的信息。

对易变形的低弹性样品存在缺点。

动态模式

探针不与样品表面接触,在样品表面上方5-20nm内扫描,通过反馈系统控制样品的上下(z方向)移动,改变探针与样品距离,以保持微悬臂共振频率或振幅恒定。同时在样品的水平面(x,y平面)内做二维扫描,从而可以获得样品的表面形貌的信息。可适用于柔软、易脆和黏附性强的样品,并且对它们不产生破坏。适合高分子聚合物的结构研究。

上一页12末页

栏目热文

文档排行

本站推荐

Copyright © 2018 - 2021 www.yd166.com., All Rights Reserved.