e的负x次方积分,e的负x分之一次方积分

首页 > 上门服务 > 作者:YD1662024-01-07 15:25:43

上面的公式说明了实数集的基数与自然数全体子集的基数相同。这首先是被集合论的建立者康托尔证明的。值得注意的是,这也说明了连续统是不可数,因为2^N > N。

一个相关的假设是连续统假设。这个假设是说,在N和R之间不存在其它的基数。有趣的是,这个假设有一个奇怪的性质:它既不能被证明也不能被证伪。

5. 阶乘函数的解析延拓

e的负x次方积分,e的负x分之一次方积分(5)

阶乘函数通常被定义为n!=n(n-1)(n-2)……1。但是这个定义只对n是正整数时有效,而上面积分方程则对分数和小数也有效,而且还可以用于负数、复数等等……

同样的积分式中我们把n换成n-1就定义了伽马函数。

6. 勾股定理

e的负x次方积分,e的负x分之一次方积分(6)

勾股定理恐怕是这个清单中最熟悉的公式了。它给出了直角三角形三边的联系,其中a和b是直角边长,而c是斜边长。这个公式还将三角形和正方形联系了起来。

7. 斐波那契数列的通项

e的负x次方积分,e的负x分之一次方积分(7)

这里,注意到φ这个数字是黄金分割比例。很多人可能听说过斐波那契数列(0,1,1,2,3,5,8,13,21,34,55…,数列中每一项是前两项的和),却很少人知道有一个公式能够计算出任意某一项斐波那契数:这就是上面我们给出的公式,公式里面F(n)代表第n个斐波那契数。也就是说,为了得到第100个斐波那契数,你不需要去计算前99个,而只需要把100代入公式。

值得注意的是,即便在计算过程中出现了许多根号和除法,最后的答案总是一个精确的正整数。

8. 巴塞尔问题

e的负x次方积分,e的负x分之一次方积分(8)

上一页123下一页

栏目热文

文档排行

本站推荐

Copyright © 2018 - 2021 www.yd166.com., All Rights Reserved.