分析方差齐检验是否呈现出显著性主要看p值,如果没有呈现出显著性(p>0.05);直接使用方差分析对比差异,如果呈现出显著性(p<0.05),可考虑使用Welch anova,Brown-Forsythe anova,或者非参数检验研究差异关系,从上表可以看出:p值为0.995大于0.05所以并未呈现出显著性,所以不同饲料样本对于体重全部均有着方差齐性。满足使用方差分析前提要求。
分析前可以考虑用图形简单判断‘4种饲料对猪体重增加的作用有无不同’。
3.图示化
可以使用折线图对数据进行简单描述,结果如下:
折线图中数值为不同饲料喂养猪的体重均值接连而成的,从折线图可以看出,不同饲料喂养猪是有明显差异的,从图片可以看出饲料D喂养的猪比较重。这表明饲料与猪的体重有一定的关系。
但是仅仅在散点图上观察还不能提供充分的证据证明不同饲料与猪体重之间有显著性差异,也许可能这种差异由于抽样的随机性造成的。所以需要更准确的方法来检验这种差异是否显著,也就是方差分析。
三、分析结果
方差分析结果将从四个方面进行说明,其中包括方差分析结果、图示化、中间过程值以及效应量指标。
1.方差分析结果
分析X与Y之间是否呈现出显著性(p值小于0.05或0.01);如果呈现出显著性;通过具体对比平均值大小,描述具体差异所在。从上表可以看出p值小于0.05,所以不同饲料样本对于体重全部均呈现出显著性差异。及具体对比差异可知, 有着较为明显差异的组别平均值得分对比结果为“B>A;C>A;D>A;C>B;D>B;D>C;D> C> B>A”。也就是说研究中D饲料的成效最好。
2. 图示化
从折线图中可以看出四种不同饲料直接的体重是具体差异性的,而且饲料D效果最好。接下来对方差结果的中间过程值进行描述。
3. 中间过程值