近日,数学家终于谱写出了 42 的三个整数的立方和。这解决了一个已经被考虑了 65 年的问题,42 已经不是最孤单的数字了。
其实,42一点都不乏味!
好吧,虽然这早已不是秘密了。
这个数在道格拉斯·亚当斯的《银河系搭车客指南》里很重要,它是“关于生命、宇宙以及一切之终极问题”的答案。这 一发现马上产生了一个新问题:什么才是真正的关于生命、宇宙和所有一切之终极问题?亚当斯说,他选择这个数是因为,他快速地问了一圈朋友们,大家都认为 42 是最乏味的。
在此,我想保护 42 不受这样的诽谤。就数学意义而言,42 毫无疑问无法和 4、π,甚至是 17 相提并论。然而,它也并不是完全无趣的。42 是普洛尼克数、卡塔兰数,也是最小的魔方幻方常数。当然,它还有一些其他特点。
普洛尼克数所谓普洛尼克数(也叫长方形数、矩形数或 heteromecic 数)是指两个连续整数的积,因此它的形式是 n(n 1) 。当 n=6 时,我们可以得到 6 x 7 = 42 。由于第 n 个三角形数是 ½[n(n 1)],所以普洛尼克数是三角形数的 2 倍。它还是前 n 个偶数之和。数量是普洛尼克数的点可以排列成一个矩形,这种矩形的一条边比另一条边大 1(图 171)。
图 171 前 6 个普洛尼克数。阴影部分表示它们为什么是三角形数的 2 倍
这里有一个关于高斯的故事,在他还很年轻的时候,被老师要求完成一个一般形式的问题
很快发现,如果相同的和式以递减的顺序写出来,即