其相应的数对之和都等于 101 。因为有 100 对这样的数对,所以它们的总和为 100 x 101 = 10100,这是一个普洛尼克数。老师提出的问题的答案是这个数的一半,即 5050 。然而,我们实际上并不知道高斯的老师在课上提出的问题到底是什么,它有可能更难。如果是这样的话,那么高斯就更聪明了。
第 6 个卡塔兰数卡塔兰数出现在许多不同的组合问题里,所谓组合问题是指对各种数学任务的完成方法进行计数。这个问题可以追溯到欧拉,他计数了一个多边形可以分割成多少种顶点相接的三角形。后来,欧仁·卡塔兰发现了这类问题和代数之间的*在加法或乘法算式里插入括号的方法有多少种。我很快就会做解释,但首先让我先介绍一下这类数。
对 n = 0, 1, 2,…而言,前几个卡塔兰数 Cn
利用阶乘可以得到如下公式:
当 n 比较大时,它还有一个很好的近似公式:
这又是一个在看似和圆或球体无关的问题里出现了 π 的例子。
Cn 是把正 (n 2) 边形分割成三角形的不同方法的数量(图 172)。