关注*DuoDaaMath 每天获得更多数学趣文
作者,Sean Li 。
翻译,伯努利数,哆嗒数学网翻译组成员。
数学中有许多非常枯燥的事情。例如谁会关心(半径为r的)圆的面积是πr²,或者“负负得正”呢?为什么?也许我们可以在最出乎意料的结果上找到答案,反直觉的事实有时候甚至骗过了最好的数学家。
1、 生日悖论
生日悖论是说如果一个房间里有23个人,那么有两个人生日是同一天的概率将大于50%。这事实看起来很违反直觉,我们都知道在任何一个特定的日子里某人过生日的概率是1/365。
这种差异源于我们只要求两个人彼此拥有同一天生日即可。不然,若我们考虑的是在某人在某个特定的日子过生日,例如3月14日,那么23个人中,出现这种事的概率是6.12%。
换句话说,如果一个房间有23个人,而你又选择了某人X,并问他:“有人和你是同一天生日吗?”,答案很可能是否定的。但如果对其他22个人重复同样的行为,每问一次,你会更有机会得到肯定答复,最终我们会看到,这个概率将会超过50%(准确的说是50.7%)
2、 曼德勃罗集
德勃罗集是一个复数集,考虑函数f(z)=z² c,c为复常数,在这为参数。若从z=0开始不断的利用f(z)进行迭代,则凡是使得迭代结果不会跑向无穷大的c组成的集合被称为曼德勃罗集。规则不复杂,但你可能没预料到会得到这么复杂的图像。
当你放大曼德勃罗集时,你会又发现无限个小的曼德勃罗集,其中每个又亦是如此...(这种性质是分形所特有的)
这真的很契合那句俗话“大中有大,小中有小”,下面有一个关于放大他的视频,我想这绝对令人兴奋不已。
如果你看了这些视频后仍然不觉得这些纯数学令人感到惊讶,那我也不知说什么好了。
3、 巴拿赫-塔尔斯基悖论
巴拿赫-塔尔斯基悖论是说,你可以将一个图形拆分后拼成两个各自和原先大小完全相同的图形。更特别的,它声称,对于一个3维实心球,可以将其分成有限份,而后拼成各自与原先的实心球大小完全相同的实心球。