还记得质数吧?这是一个3000年前的问题:
- 2、3、5、7 、11、13 、17 、19 、23 、29、 p。p是什么?31。下一个p是什么?这是37。后面的p呢?41.。然后呢?43。但是,你怎么知道接下来会发生什么?
给出一个预测下一个质数将是什么的公式(在任何给定的数字序列中),那么你的名字将永远和最伟大人联系在一起,类似于牛顿,爱因斯坦和哥德尔。
介绍历史上许多数学巨人都研究过质数的性质。从欧几里得第一次证明素数有无限多个,到将素数与 ζ函数联系起来的欧拉乘积公式。从高斯和勒让德的素数定理公式到哈达玛德和德拉瓦莱普桑。伯恩哈德·黎曼仍然是在质数理论中取得最大突破的数学家。他的全部工作都包含在1859年发表的一篇8页的论文中,这篇论文对素数的分布做出了新的、前所未有的阐述,至今被认为是数论中最重要的论文之一。
自发表以来,黎曼的论文一直是质数理论的主要焦点,也是1896年质数定理证明的主要原因。此后又发现了一些新的证明,包括塞尔伯格的基本证明。然而,黎曼关于 ζ函数根的假说仍然是一个谜。
有多少质数?让我们从简单的开始。我们都知道一个数要么是质数,要么是合数。所有合数都是由质数组成的,并且可以分解为质数乘积。公元前300年,欧几里得(就证明了它们的数量是无限的。证明过程非常经典,本篇文章就不再赘述。
为什么质数这么难理解?即使对素数的算术性质进行了大量的研究,人们仍然对其知之甚少。科学界对我们缺乏理解质数行为的能力非常自信,以至于大数的因式分解是加密理论的基础之一。以下是一种看待它的方式。
我们很了解合数,它们是由素数组成的,很容易地写出一个公式来预测合数。最著名的例子是公元前200年的“埃拉托斯尼筛子”。它所做的,就是简单地标记每个质数的倍数直到一个限定。取质数2,标记4、6、8、10,以此类推。接着,取3,标记6、9、12、15,以此类推。剩下的只有质数。虽然很容易理解,但埃拉托斯提尼的筛子不是很有效。
有一个函数极大地简化了工作,那就是6n /- 1。这个简单的函数取出除2和3之外的所有素数。代入n = 1、2、3、4、5、6、7,结果是,5、7、11、13、17、19 、23 25、29、31、35、37、41、43。函数生成的唯一非素数是25和35,它们分别可以被因式分解成5 x 5和5 x 7。下一个非素数是,49 = 7 x 7, 55 = 5 x 11等等。
为了直观地说明这一点,我使用了一种我称之为“组合阶梯”的东西,这是一种简单的方法,可以看到函数生成的合数是如何为每个质数布局和组合的。在下图的前三列中,你可以清楚地看到质数5、7和11,它们各自的组合阶梯达到并包括91。第四列的混乱显示了筛子是如何除去除了质数之外的所有数的,这很好地说明了为什么质数如此难以理解。
基本概念那么这些和黎曼假说有什么关系呢?简单地说,为了更多地了解质数,19世纪的数学家们不再试图绝对肯定地预测质数的位置,而是开始把质数作为一个整体来研究。这种分析方法是黎曼的拿手之处,也是他著名的假说产生的地方。然而,在我解释它之前,有必要熟悉一些基本的概念。
调和级数调和级数是一个无穷数列,最早由尼古拉斯·奥雷斯姆在14世纪进行研究的。它的名字与音乐中的和声的概念有关。该系列的内容如下:
- 无穷次调和级数的第一项
这个和被奥瑞斯姆证明是发散的。
ζ函数调和级数是ζ函数的特例。对于r和n两个实数,给出了如下函数: