若F值接近于1,就没有理由拒绝H_0,;反之F值越大,拒绝H_0的理由越充分。若对应p值<0.05,则拒绝H_0,认为各样本总体均数不全相等,存在显著差异;否则无差异。
3、前提条件
上述变异分解、均方估计及F统计量都是基于正态分布理论,进行方差分析时同样要求资
料满足正态分布且方差相等的基本假设。故方差分析的前提条件有以下3个:
1、各样本组内观察值相互独立;
2、各样本服从正态分布;
3、各样本组内观察值总体方差相等,即方差齐性。
二、方差分析分类
方差分析从使用频率来讲可分为以下6类:单因素方差分析、双因素方差分析、多因素方差分析、事后多重比较、协方差分析、重复测量方差分析,接下来分别进行简单介绍。
1、单因素方差分析
用于分析一类定类数据与定量数据之间的差异性,且定类数据通常为多分类数据。比如分析不同班级(1班、2班、3班)学习成绩之间的差异,就可以使用单因素方差分析进行3个班级学习成绩均值的差异性分析(独立样本t检验只能进行2组数据之间均值差异的比较)。
SPSSAU位置:【通用方法】模块->【方差分析】
2、双因素方差分析
用于分析2类定类数据与定量数据之间的差异性,比如分析不同班级(1,2,3班)、不同性别(男女)学习成绩之间的差异,此时可使用双因素方差分析。当主效应存在,即方差分析结果显示存在显著差异时(p<0.05),要具体对比两两组别的差异(如1班和2班,2班和3班,1班和3班),需要进行事后多重比较。双因素方差还可以分析二阶交互效应。如班级*性别这个交互项是否存在显著差异,如果进行二阶效应且呈现出显著性,此时可进一步进行简单效应分析。后面在第3部分方差分析流程中会详细进行说明。
SPSSAU位置:【进阶方法】模块->【双因素方差】
3、多因素方差分析
三因素及以上统称为多因素方差分析,用于分析多类定类数据与定量数据之间的差异。如三因素方差分析,可同时进行二阶效应分析和三阶效应分析。当主效应存在时,可进行事后多重比较;当交互效应存在时,需要进行简单效应分析。后面第3部分将详细进行说明。
SPSSAU位置:【进阶方法】模块->【三/多因素方差】