毕达哥拉斯树
辛钦常数
对于任意实数x,都可以写成下面的形式:
其中,a0,a1,a2……都是整数,而 [a0; a1, a2, a3, …] 就称为实数x的连分数展开。
苏联数学家辛钦Khinchin
1964年,数学家辛钦证明了一个惊人的结论:对于几乎所有实数x(除了有理数、实系数二次方程的解,以及自然对数的底e等特殊情况之外),其连分数表示式的系数ai的几何平均数会收敛到一个相同的数,且与实数x的数值无关。
这个数就是辛钦常数,用
毕达哥拉斯树
辛钦常数
对于任意实数x,都可以写成下面的形式:
其中,a0,a1,a2……都是整数,而 [a0; a1, a2, a3, …] 就称为实数x的连分数展开。
苏联数学家辛钦Khinchin
1964年,数学家辛钦证明了一个惊人的结论:对于几乎所有实数x(除了有理数、实系数二次方程的解,以及自然对数的底e等特殊情况之外),其连分数表示式的系数ai的几何平均数会收敛到一个相同的数,且与实数x的数值无关。
这个数就是辛钦常数,用
Copyright © 2018 - 2021 www.yd166.com., All Rights Reserved.