这是我N年前写在新浪博客上的文字,现在重新整理后发到今日头条上,并修正了一些笔误。
梯度、散度和旋度是矢量分析里的重要概念。之所以是"分析",因为三者是三种偏导
数计算形式。这里假设读者已经了解了三者的定义。它们的符号分别记作如下:
从符号中可以获得这样的信息:
①求梯度是针对一个标量函数,求梯度的结果是得到一个矢量函数。这里φ称为势函数;②求散度则是针对一个矢量函数,得到的结果是一个标量函数,跟求梯度是反一下的;
③求旋度是针对一个矢量函数,得到的还是一个矢量函数。
这三种关系可以从定义式很直观地看出,因此可以求"梯度的散度"、"散度的梯度"、
"梯度的旋度"、"旋度的散度"和"旋度的旋度",只有旋度可以连续作用两次,而一维波
动方程具有如下的形式
eq.1
其中 a 为一实数,于是可以设想,对于一个矢量函数来说,要求得它的波动方程,只有求它的"旋度的旋度"才能得到。下面先给出梯度、散度和旋度的计算式:
eq.2