Quantumscape 宣称其单层固态电池在加外压的条件下可以实现 4C(实际约 3C)快充,而且属于无负极锂 金属电池。但是电池的关键性能参数能量密度、容量保持率未给出。
也有研究者设计了复合电解质,对应的高镍三元正极(复合了约 30%固体电解质,所以容量有摊薄)-复合 硫化物(或 LPSCl-卤化物-LPSCl)电解质-石墨薄层-锂金属负极电池样品实现了室温 1C,55 度下最高 20C(电 池大幅加外压;到 5C 时容量衰减都不太大)的倍率性能。研究者还论述,其合成的固体电解质 Li9.54Si1.74(P0.9Sb0.1)1.44S11.7Cl0.3 (称 LSPS)作为主体电解质对应正极的实际容量最高,超过前述 LGPS 等固体电 解质。研究者论述,LPSCl 层起到了电极-电解质界面稳定作用。
总之,我们中性预期,具备大规模商业化价值的固态、液态锂金属电池均可实现 1C 左右的充放倍率性能。 更高倍率对电池综合性能妥协、对成本的考验高。
5、循环寿命改善?不满足于可用
电池循环寿命和循环的条件非常相关。液态锂离子电池的循环寿命较长。典型三元锂离子电池的循环寿命 在 1000 次以上;磷酸铁锂电池的循环寿命更长,可以接近甚至超过 10000 次。
前述使用 LiPSCl 固体电解质的三星软包固态电池在 60 度、0.5C 深度充放的条件下具备超过 1000 次的循环 寿命。该电池也施加了外压。
有研究者构建了铁锂正极-PEO-LiCF3SO3-LATP 电解质-锂金属负极的材料体系,制成电池后在 60 度、0.5C 倍率下循环,也取得了约 1000 次的循环寿命。当然另一方面,该电池的正极有效容量随倍率性能提升衰减较明 显。
前述高镍三元正极(复合了约 30%固体电解质,所以容量有摊薄)-复合硫化物(或 LPSCl-卤化物-LPSCl) 电解质-石墨薄层-锂金属负极电池在使用 LSPS 中心固体电解质时,55 度 1C 倍率实现了 2000 次循环寿命,20C 实现了接近 10000 次循环寿命。
前述三元正极-Li2In1/3Sc1/3Cl4 固体电解质-锂铟合金负极电池在 3C、较高充放深度的条件下实现了 3000 次 的循环寿命(低倍率条件下电池容量衰减情况和高倍率比较接近)。该电池循环过程中也需要保持较高的外压。
有研究者使用钽掺杂 LLZO,并搭配 LPSCl 掺杂的 NCM811 正极和过量锂金属负极得到全固态电池,中等 倍率条件下循环实现了约 1000 次循环寿命(固体电解质经过烧结,负极和电解质经过冷等静压,扣电经过热处 理)。
前述高镍正极-LPSCl 固体电解质-微米硅颗粒固态电池的循环寿命约 500 次。
Quantumscape 宣称其单层固态电池在加压条件下可以实现超过 1000 次循环寿命。对于无负极锂金属电池 而言,该寿命表现出色。
我们认为,接近实用状态的固态电池的循环寿命总体上距离液态电池还有相当差距。但是考虑应用领域, 中等倍率条件下 1000 次的循环寿命可以满足车用需求。如果将材料体系向能量密度较低但总体更稳定的方向调 整,也可能满足一部分储能场景的需求。 当然,固态电池的日历寿命通常可认为较长,此处也不再赘述。(报告来源:未来智库)
6、成本低廉?不懈努力不可缺少
当前各类固态电池的成本高于液态电池。相比于内容丰富的固体电解质、固态电池性能方面的研究工作, 成本方面的(公开)研究较少。有研究者综述了不同类型的固态电池的成本预期研究结论:固体电解质的单位 成本随材料体系不同有所不同(固体电解质成本假设的差异巨大:氧化物固体电解质每公斤 10-100 美元不等, 硫化物固体电解质每公斤 10-50 美元不等),用量不同也有带来了巨大的成本区别;电极用量、处理工艺和电池 制造、成组也有不确定性。研究者认为,硫化物固体电解质对应的固态电池成本更低。
和现有的液态电池体系作对比,固态电池如试图取得单位能量的成本优势,需要同时在固体电解质降本减 量、电极适配、电池制造等方面取得显著进展。
7、合适的是最好的,挑战者的纯策略
我们把能量、倍率、寿命、安全性和工艺性综合考虑(物料成本暂时难以定量分析,部分体系使用昂贵的 化学元素那么前景有限,部分体系使用组成/结构复杂的固体电解质则对成本也有不利影响),固态电池和现有 液态电池各有所长。
虽然具体技术路线(如固体电解质及电极材料的选择、电池生产工艺等)仍难称明朗,但是作为挑战者, 固态电池产业从业者的策略其实是明确的:发挥并强化安全性方面的部分优势,力争在能量密度方面占据优势, 将电池倍率、循环寿命和工艺性进一步优化,巩固固态电池优势场景下的核心潜在客户(对极端安全性有要求 的特种应用;以长续航、高安全性为卖点的高端电动车等)。如果后续性能参数和成本控制能力取得有效进展, 那么市场空间会逐步扩大,乃至成为锂电池的关键技术路线。我们估计,到 2025 年,各种类型的固态锂离子电 池有可能实现几十到上百 GWh 的年出货量,对应市场规模或达千亿元。各类“固体电解质 ”材料也有可能在 各自细分市场开疆拓土。
四、先行者谋篇,固态电池专利撷英1、固体电解质-固态电池专利规模
2010 年以来,以中文或英文申请的处于有效、实质审查和公开状态的固体电解质-固态电池专利数共有约 8000 个。主要申请量在中国,也有相当数量在美、日、欧、韩、世界知识产权组织。
近年来,固体电解质-固态电池的专利申请基本呈递增趋势(2020 年至今,部分专利尚处于未公开状态)。
申请人方面,固态电池专利的主要申请人包括多个车企、电池企业、科研院所。丰田领先固体电解质-固态 电池专利申请规模。