这效率也太低下了吧,一颗二叉查找树的优势完全丧失了。怎么办呢?既然上面的二叉查找树在插入的时候变成了“一条腿”,也就是丧失了平衡,那我们干脆做出一点改进,使用平衡二叉树吧。
二、平衡二叉树
下面就是一颗平衡二叉树。
上面这颗二叉树就是平衡二叉树,也叫作AVL树。仔细分析你会发现如下特点:
(1)从任何一个节点出发,左右子树深度之差的绝对值不超过1。
(2)左右子树仍然为平衡二叉树。
现在我们再往里插入一个元素4,这时候会发生什么呢?
从图中我们可以看到,插入了4之后破坏了平衡,怎么办呢?既然破坏了平衡,那就想办法纠正过来。
我们发现经过调整之后,我们二叉树就重新回到了平衡。对于其他插入的情况,大家可以自己私下试一遍,最终你会发现一个结论,那就是平衡二叉树在插入时最多只需要两次旋转就会重新恢复平衡。
从上面这个过程我们会发现,平衡二叉树真的很不错,在查找时既有着二叉查找树的优越性,在插入时还能通过调整继续保持着。那么为什么还要使用到红黑树呢?我觉得可以从以下两个方面来考虑:
(1)删除:对于平衡二叉树来说,在最坏情况下,需要维护从被删节点到根节点这条路径上所有节点的平衡性,旋转的量级是O(logN)。但是红黑树就不一样了,最多只需3次旋转就会重新平衡,旋转的量级是O(1)。
(2)保持平衡:平衡二叉树高度平衡,这也就意味着在大量插入和删除节点的场景下,平衡二叉树为了保持平衡需要调整的频率会更高。
注意:在大量查找的情况下,平衡二叉树的效率更高,也是首要选择。在大量增删的情况下,红黑树是首选。
鉴于以上原因,因此我们才使用到了红黑树这种更好的结构。上面提了这么多次红黑树,相信你已经迫不及待的想要认识一下了。下面就正式拉开红黑树的序幕。
三、红黑树
红黑树听名字就知道,里面涉及到两种颜色:红色和黑色。我们直接来看一下: