科赫雪花自相似性
5分形图案的维度
我们知道:直线是1维的,平面是2维的,空间是3维的,这称为拓扑维度。不过要表示分形图案的维度,我们需要用到另一个概念——豪斯多夫维度,它是德国数学家豪斯多夫在1918年提出的,所描述的刚好是自相似图形的特点。
豪斯多夫维度的定义是:如果能把一个图形按照1:m的比例分割,最后分出n份,那么豪斯多夫维度就是
比如,将一条线段分成按照1:2的比例分割,就能分割成2份。于是线段的豪斯多夫维度是log22=1;把一个正方形按照1:2的比例分割,就能分割成4份,所以正方形的豪斯多夫维度是log24=2;把一个立方体按照1:2的比例分割,就能分割成8份,立方体的豪斯多夫维度是log28=3。
分割图形
按照这样的规律,我们可以计算出科赫雪花和谢尔宾斯基地毯的维度。科赫雪花每次迭代时相似比为1:3,而且分出了4份,所以豪斯多夫维度为log34=1.26;谢尔宾斯基地毯中的每一小块与全体的相似比为1:3,每张地毯可以分出8个小块,因此豪斯多夫维度是log38=1.89。
分形曲线的维度居然不是整数,真是匪夷所思!
科学家们还发现:现实生活中小到一片叶子,大到一个星球,它的表面都是崎岖不平的。曾经,我们研究的几何学都是以光滑的曲线和平面为基础,研究分形结构有助于我们更好的认识真实的世界。
菜花的分形结构
艺术家们还构造出了许许多多的分形结构,给我们一种深邃之美。