(1)
这个级数实际上是s的函数,后来被称为ζ函数。
欧拉一开始自然先考虑s为正整数的情况:当s=1时,得到的是我们熟悉的不收敛的调和级数;如s>1,级数收敛,比如:s=2,是欧拉解决的巴塞尔级数,无限项求和结果是ð2/6。
天才的欧拉将调和级数的发散性与“素数无限多”的问题联系起来,得到一个惊人的结论:所有素数的倒数之和,类似于调和级数一样地发散:
(2)
证明了上面的结果,也就间接证明了 “素数无限多”,因为有限的序列之和不可能发散。
欧拉由此开始,通过研究ζ函数来研究质数,居然得到两者的神奇关系:ζ函数等于一个与所有质数相关的乘积!他得到下面这个看起来有点奇怪的“欧拉乘积公式”:
(3)
等式左边的符号是与自然数n的幂次倒数有关的无穷求和,而右边的符号是遍历所有素数p的一个无穷乘积。这个公式通过复数s,将自然数n(n=1,2,3,4,5等)与素数p(p=2,3,5,7,11等)联系起来。
从欧拉乘积公式,可以间接地证明存在无穷多个素数。
如上所述,已有多种方法证明素数有无穷多个。但是,素数的出现规律却一直困惑着数学家。一个个地看,素数在正整数中的出现没有什么规律;可是总体地看,素数的个数竟然有规可循。
我们对付素数最笨的办法就是把它们从小到大一个一个列出来,如上图所示,列出了比100小的所有素数,的确看不出什么规律。然后,我们又想出一个笨主意:计数!数数看小于某一个数的素数有多少个?例如:小于10的素数有4个;小于20的素数有8个;小于50的素数有15个……
于是,数学家为此定义了一个函数,叫做素数计数函数,记作π(x),也就是说:π(10)=4;π(20)=8等等,可以一直估算下去。更进一步,可以把函数的图像画出来:
图2 素数计数函数
从π(x)的函数图,倒是研究出了一些素数个数增长的整体规律,称为“素数定理”:
(4)
上式是素数定理的粗略表达式,其中 ln x 为 x 的自然对数。公式的意思是,当x趋近无限,π(x)与x/ln x的比值趋近 1,但这不表示它们的数值随着x增大而接近。
素数分布的lnx倒数形式首先由欧拉猜想,勒让德最后得到素数定理。50年后,高斯在一封信中说他在少年时代就猜出了这个结果,所以素数定理也叫勒让德-高斯定理。
黎曼猜想,超越百年未解高斯比欧拉要晚生70年,黎曼(1826-1866)是高斯的学生,可惜早逝于39岁。他思想深刻成果累累。据说当年高斯想试试黎曼到底有多聪明,让他从分析转做几何,没想到黎曼一上手便出人意料地创立了黎曼几何。之后,黎曼又继续欧拉没有完成的ζ函数研究素数问题。
黎曼首先将欧拉的ζ函数(1)解析延拓到几乎整个复平面(除了s=1)。解析延拓的意思是将函数的定义域解析地扩大到原来不能应用的数域,即对所有的复数s,ζ函数都有定义,在S等于1的地方有一个不解析的、留数等于1的简单极点。
解析延拓后的ζ函数叫做 “黎曼ζ函数”。
黎曼ζ函数与素数有直接联系,根据欧拉乘积公式(3),当实部大于1时,它是一系列自然数幂次的倒数和,同时又是与所有素数有关的某种乘积。因此,通过对黎曼ζ函数的研究会得到很多素数方面的信息,例如素数定理(4),就是在1986年通过对黎曼ζ函数的研究而第一次被证明的。关于素数更精确的信息在于进一步对黎曼ζ函数零点的研究。
黎曼发现素数出现的频率与黎曼ζ函数的零点分布紧密相关。因此,黎曼研究ζ函数的零点分布。
1859年黎曼当选为柏林科学院通讯院士,他提交了八页纸论文《论小于某值的素数个数》。在文章中,他提出了黎曼猜想。这个猜想是数论中与素数相关至今未解的重要难题。