线性相关是不是一定能线性表示,线性相关与线性无关如何分别

首页 > 经验 > 作者:YD1662024-01-04 23:51:55

5.矩阵秩的几何意义

矩阵的秩即矩阵的各向量所张成空间的维数不能说秩是矩阵对应图形的维数,因为矩阵的图形只取了各向量的终点,而不含有这些向量的之间的几何关系,故二者的维数不一定相等,而矩阵的秩按定义应取其向量空间维数。如下图中的空间向量a,b,c可以张成一个三维空间,故矩阵(a b c)的秩为3,但是其终点组成的图形是一平面,维数为2,显然和秩是不一样的

线性相关是不是一定能线性表示,线性相关与线性无关如何分别(17)

结合上面对初等变换的几何解释,正是因为三种初等变换都不改变矩阵向量空间的维数,所以对于复杂的难以观察维数的矩阵,我们可以先用初等变换作用于矩阵进行简化,然后到容易观察的形式时求出它的秩;

6.向量组线性相关/无关的几何意义

注:在讨论向量张成的空间相关问题时,某种程度上我们可以把向量组和矩阵等价对待,二者都是一组向量的集合,只是向量组相对矩阵明确了向量的维数与向量个数,而矩阵有行与列两种选择,所以只要确定矩阵的向量取行还是列,就可以把矩阵当作向量组讨论;线性相关在代数上就是一组向量中至少有一个向量能用其余向量线性表示,而几何意义是它们所张成的向量空间维数少于这些向量的个数,这样就至少存在一个向量落在其余向量形成的向量空间中,而向量空间实际上是一个坐标系统,所以处于其中的点(向量)都可以由这些向量定位出来(线性表示),在向量之间表现出一种相关性;而线性无关的几何意义就是一组向量张成空间的维数等于这些向量的个数,这样没有任何一个向量落在其余向量形成的空间里,每一个向量对其余向量来说都是超越自身空间维度的(独立的),因而无法被定位(线性表示),表现成一种相互无关性

线性相关是不是一定能线性表示,线性相关与线性无关如何分别(18)

以上图棱锥为例,因为HI处于GH和GI所形成的面里,所以HI必然可以由这两个向量表示,所以三者线性相关(三者形成的空间维数为2<3);而HI在IG和IF形成的平面之外,所以H点无论如何都不能被GI和IF定位到,同时IF也不在IG和HI形成的平面里,IG不在IH和IF形成的平面里,同理可知它们之间不能线性表示,所以三者线性无关(三者形成的空间维数为3=向量个数)

7.方程Ax=0的几何意义

由前面叙述容易看出此方程表示向量x与A的每一个行向量都垂直,或者说向量x垂直于矩阵A的行向量空间。这样我们可以直接根据几何意义得到结论:Ax=0有非零解的充要条件是矩阵A的秩要小于x的维数n;这是因为对于确定维度的向量空间M,如果我们可以找出独立于它的一维或多维空间N,则在空间N里的向量总是垂直于空间M;例如在直角坐标系O-xyz中,设A是x-y平面上的向量空间,x是空间向量,因为z维上的向量总是垂直于A,所以x在这一方向上存在无数非零解。反之若矩阵A的秩等于n,且x非零,则由于x也在n维空间内,所以它和A中的行向量必然线性相关,无法独立于A的行向量空间,所以这时仅有零解。

当方程有非零解时,设A的向量空间维数为R(秩),由上叙述可知解向量x中存在n-R个分量取值自由,如果我们把这n-R个自由变量看作是一个n-R维空间中的向量坐标时,显然此空间中每一个向量都能确定原方程组的一个解,又因为每一个向量都可以用这个n-R维空间的一组单位正交基线性表示,所以这组单位正交向量所确定的一组解通过线性组合就可以表示出原方程的任意解,故这组解就是原方程的一个基础解系,上述叙述也正是基础解系的几何意义

8.方程Ax=b的几何意义

设A是m*n矩阵,x是n维向量,由前述几何意义知道,如果b处于A的向量空间中(b和A的向量线性相关),则一定可以由A的向量线性表示,也即解存在,而b落在A的向量空间等价于b的维数小于等于向量空间A的维数,也可表述为R(A)=R(A b)=R,即A的秩等于增广矩阵的秩,这种表达也是许多教科书中常用的。当R=n时,n维向量x的每个分量都是线性表示的确定系数,故只有唯一解,而R<n时,向量空间有n-R个维度不存在,故这些维度上对应的系数可任意(自由变量),这时存在无穷多解

作者:Vieta_Qiu

链接:https://www.jianshu.com/p/d22051caeb6b

来源:简书

简书著作权归作者所有,任何形式的转载都请联系作者获得授权并注明出处。

上一页12345末页

栏目热文

文档排行

本站推荐

Copyright © 2018 - 2021 www.yd166.com., All Rights Reserved.