初一数学同类项的定义,七年级同类项的定义并举例

首页 > 教育培训 > 作者:YD1662023-05-28 11:51:59

【要点梳理】

知识点一、一元一次方程的概念

1.方程:含有未知数的等式叫做方程.

2.一元一次方程:只含有一个未知数(元),未知数的次数都是1,这样的方程叫做一元一次方程.

3.方程的解:使方程的左、右两边相等的未知数的值叫做这个方程的解.

4.解方程:求方程的解的过程叫做解方程.

知识点二、等式的性质与去括号法则

1.等式的性质:

等式的性质1:等式两边加(或减)同一个数(或式子),结果仍相等.

等式的性质2:等式两边乘同一个数,或除以同一个不为0的数,结果仍相等.

2.合并法则:合并时,把系数相加(减)作为结果的系数,字母和字母的指数保持不变.

3.去括号法则:

(1)括号外的因数是正数,去括号后各项的符号与原括号内相应各项的符号相同.

(2)括号外的因数是负数,去括号后各项的符号与原括号内相应各项的符号相反.

知识点三、一元一次方程的解法

解一元一次方程的一般步骤:

(1)去分母:在方程两边同乘以各分母的最小公倍数.

(2)去括号:依据乘法分配律和去括号法则,先去小括号,再去中括号,最后去大括号.

(3)移项:把含有未知数的项移到方程一边,常数项移到方程另一边.

(4)合并:逆用乘法分配律,分别合并含有未知数的项及常数项,把方程化为ax=b(a≠0)的形式.

(5)系数化为1:方程两边同除以未知数的系数得到方程的解

(a≠0).

(6)检验:把方程的解代入原方程,若方程左右两边的值相等,则是方程的解;若方程左右两边的值不相等,则不是方程的解.

知识点四、用一元一次方程解决实际问题的常见类型

1.行程问题:路程=速度×时间

2.和差倍分问题:增长量=原有量×增长率

3.利润问题:商品利润=商品售价-商品进价

4.工程问题:工作量=工作效率×工作时间,各部分劳动量之和=总量

5.银行存贷款问题:本息和=本金 利息,利息=本金×利率×期数

6.数字问题:多位数的表示方法:

习题讲练

初一数学同类项的定义,七年级同类项的定义并举例(17)

初一数学同类项的定义,七年级同类项的定义并举例(18)

5.某校七年级社会实践小组去商场调查商品销售情况,了解到该商场以每件80元的价格购进了某品牌衬衫500件,并以每件120元的价格销售了400件,商场准备采取促销措施,将剩下的衬衫降价销售.请你帮商场计算一下,每件衬衫降价多少元时,销售完这批衬衫正好达到盈利45%的预期目标?

6.学校校办工厂需制作一块广告牌,请来师徒二人,已知师傅单独完成需4天,徒弟单独完成需6天,现由徒弟先做一天,再两人合作,完成后共得到报酬450元,如果按各人完成的工作量计算报酬,那么该如何分配?

7.一个车队共有n(n为正整数)辆小轿车,正以36km/h的速度在一条笔直的街道上匀速行驶,行驶时车与车的间距均为5.4m.甲在路边等人,他发现该车队从第一辆车的车头到最后一辆车的车尾经过自己身边共用了20s的时间,假设每辆车的车长均为4.87m.

(1)求n的值;

(2)若乙在街道一侧的人行道上与车队同向而行,速度为v(m/s),当车队的第一辆车的车头从他身边经过了15s后,为了躲避一只小狗,他突然以3v(m/s)的速度向前跑,这样从第一辆车的车头到最后一辆车的车尾经过他身边共用了35s,求v的值.

第六章复习

【知识网络】

初一数学同类项的定义,七年级同类项的定义并举例(19)

【要点梳理】

要点一、多姿多彩的图形

初一数学同类项的定义,七年级同类项的定义并举例(20)

上一页12345下一页

栏目热文

文档排行

本站推荐

Copyright © 2018 - 2021 www.yd166.com., All Rights Reserved.