e的平方等于几,什么的极限等于e的平方

首页 > 上门服务 > 作者:YD1662024-01-26 02:20:06

图二十四 欧拉公式

这里借用一首诗来欣赏这个公式之美

《春怨》

心中既有i,何故不表白;

梦里合如 1,醒时各伤怀;

春去春又来,e人空等待;

闲时花凋零,不是浪漫π。

一个表达式将代数中的"i",算术中的"1",分析中的"e",以及圆周率π,这几个重要的数学常数联系到了一起,没有比这更神奇的事情了。

欧拉一生对分析学有着巨大的贡献,他与生俱来的洞察力与魄力让他在分析研究上运用自如,但他的这样的性格同时也带来了一些"麻烦",就是欧拉所得到的这些结论背后的严谨性,欧拉并没有真正一一的仔细去推敲。但这并不影响他数学大师的身份,或者说,相反的他将这些的结论的严谨性留给了后世的数学家(如拉格朗日、柯西等),让年轻一代有更多的思考和成长空间。

e的平方等于几,什么的极限等于e的平方(25)

图二十五

在欧拉工作的鼓励下,柯西、黎曼、维尔斯特拉斯将自然常数e巧妙的渗入复函数中,使得复变函数得以在19世纪与抽象代数、非欧几何并列为三大成就。

四、自然常数e到底是什么样的数?

以17世纪自然常数e被重新认识开始,18、19世纪的数学家们迅速认识到e的不可缺少性,再通过e在各个领域的出色表现,数学家们对e的本身性质也产生了好奇。第一个问题无疑是:自然常数e是有理数还是无理数?

这不是一个简单的问题,但对于大师欧拉却并非难事。1737年,青年欧拉就已经证明了自然常数e以及它的平方e^2均为无理数。欧拉的证明方法不是很容易理解,但相信下面的这个初等证明你会阅读得很愉快。

自然常数e为无理数的证明:

e的平方等于几,什么的极限等于e的平方(26)

图二十六

自然常数e的无理性被证明以后,数学家们继续前进,并得到了下一个惊人的结论:自然常数e是超越数。所谓超越数,是与代数数相对应的数,即超越数不是任何一个整数系多项式的解。18世纪的朗伯特(1768年他证明了π是无理数)曾猜测自然常数e是超越数,但并未给出证明,这一结论的证明最后在1873年由法国数学家埃尔米特给出,证明长达30多页。

e的平方等于几,什么的极限等于e的平方(27)

五、结语

数学的研究永无止境。历时五百年,自然常数e已经在数论、代数、分析等数学领域发挥了巨大作用,它的归宿在哪里?又将走向何方?完整的解答交给时间,但可以确定的是,自然常数e会变得越来越重要。

参考文献:

1. ELI MAOR.e的故事.人民邮电出版社.2012

本文转载自网易新闻@数学原来如此

上一页34567末页

栏目热文

文档排行

本站推荐

Copyright © 2018 - 2021 www.yd166.com., All Rights Reserved.