怎么证明几个点在同一条直线上,怎么证明三个点在同一个圆上

首页 > 实用技巧 > 作者:YD1662024-02-14 06:50:43

共线点的证法

判定三点或三个以上的点位于同一直线,谓之共线点问题.共线点是初等几何中的一类重要问题,一些重要的、有特殊性的点,恰恰共线,成了初等几何的著名问题.

1.基本思路

在理论上讲,共线点也是一种等量关系,因为有如下三个准则:

(i)化成等距关系:两个较小的距离之和等于最大的距离.

(ii)化成面积关系:相应的三角形之面积为零

(ii)化成角的等量关系

在初等几何中,常用的是后者,前两种多见于解析几何.

2.常用途径

在初等几何中,共线点主要是化成角的等量关系,具体的途径,则有如下几条:

(i)对顶角之逆

欲证X、Y、Z共线,可自X引一直线PXQ,若Y、Z在PQ的异侧(如图),则有

怎么证明几个点在同一条直线上,怎么证明三个点在同一个圆上(1)

∠YXP=∠ZXQ推出X、Y、Z共线

(ii)邻角互补.

自X引射线XP,若Y、Z在直线XP的异侧(如图),则有

怎么证明几个点在同一条直线上,怎么证明三个点在同一个圆上(2)

∠YXP ∠PXZ=180°推出X、Y、Z共线

(iii)平行线的唯一性

证一点与另两点的连线皆平行于某定直线,则该三点共线.

(iv)垂线的唯一线.与上类似

((iii)、(iv)这两条,实质上也可归结成前两条的特例但因常用而单列之,以便引用.)此外,常用的还有以下两条途径:

(v)证明具有某特性的点必在另两点的连线上

(vi)归结为已知的共线点定理

例如,许多共线点的问题,都可用将要介绍的梅氏的共线点定理去证.

3.证法举例

例1、已知:△ABC内接于⊙O,L、M和N分别为BC、CA和AB的中点,连结NM、LM分别交AB、BC于D、E,I为△ABC的内心。求证:D、I、E共线.

说明 其实,角平分线和外接圆上造成的等角关系很多,恰当地运用,就产生多种解法,现分别介绍如下:

证法1 利用对顶角之逆

设α=∠DIN,B=∠CIE,其它各角如图1.1所示,则有M平分弧AC,

怎么证明几个点在同一条直线上,怎么证明三个点在同一个圆上(3)

这个证明中,对顶角a、β是以两种不同的方式进行转化的,因此,将每种方式加以发展,便又得两种证法:如图1.2的所示,a、β是邻补角;如图1.3所示,证ADIP、CEIQ皆为菱形,即可由平行线的唯一性得出所证。

怎么证明几个点在同一条直线上,怎么证明三个点在同一个圆上(4)

首页 123下一页

栏目热文

文档排行

本站推荐

Copyright © 2018 - 2021 www.yd166.com., All Rights Reserved.