图11:匹配AT/CVT/DCT的发动机工作区间对比
图12是通用CVT的实际控制工况点,这和图11中的CVT工作区间完全匹配。红色线为实际最优油耗转速,这和理论最优功率线稍有区别,这是因为在靠近怠速区域(700-1000rpm),实际需求的发动机扭矩较低,本身就不贴合理论最优功率线,同时考虑到舒适性,低扭工况发动机提升了转速,对这条理论线做了适当的工程修正。
图12:通用CVT实际工况控制点
讲到这里大家可能会有一个疑问,对发动机 CVT和发动机 DCT这2个配置,前者CVT效率低而发动机效率高,后者DCT效率高而发动机效率低,那么这2个动力总成,到底哪个燃油经济性更有优势?要回答该问题,得先看整车的效率损失分布。据《汽车理论》一书关于影响汽车燃油经济性的因素,在城市工况下,发动机的能量损耗(包括热损耗/怠速/附件损耗)约为81%,传动系损耗为5.6%;而郊区工况下发动机约为74%,传动系为5.4%。可以估算出在城市工况,发动机效率提升1%,变速箱效率要提升4%才得到相同的节油效果。在郊区工况,发动机1%对应变速箱3%。显然,发动机对油耗提升起绝对主导作用。回到之前的问题,假定CVT能提升发动机效率3%(各发动机特性不一样),且DCT比CVT的平均效率高约10%,那么DCT配置有优势;如果发动机效率提升大于3%,或DCT效率比CVT平均效率低约10%,则CVT配置有优势。基于产品不同,这2种情况在不同车上都存在。
通过上述分析,CVT在提升发动机效率的同时,进一步提升自身效率是当前的主要趋势。图13简要列举了通用CVT提升效率的技术方案。其中针对链条无级变速,上文从钢带VS钢链的角度已做详细讲解。高效减振TC,智能油泵和变速箱油自动加热,其他日系主流CVT上也有配置,区别是实现该功能的具体结构各有不同,本文不作详细介绍。
图13:通用CVT提升效率的技术
这里特别讲一个精细技术--自动油位控制。变速箱内约有8.4L油,主腔里的主减齿轮部分浸在油内,工作时会导致搅油损失。如图14所示,自动油位控制阀安装在副腔内,在低温时打开,主腔高油位。此时油粘度高,齿轮/轴承工作阻力和钢链摩擦损失都较高,远大于搅油损失。搅油损失的益处更多,其热量能帮助油温尽快上升。当油温上升到工作温度时,就要尽量降低搅油损失。此时自动油位控制阀关闭,副腔油位升高,多存储了一部分油,从而降低主腔油位高度,降低搅油损失。
图14:自动油位控制