世界公认第一难数学题,史上巨难三年级数学题

首页 > 教育 > 作者:YD1662024-04-15 10:20:36

怀尔斯和他以前的博士研究生理查德·泰勒用了近一年的时间,用之前一个怀尔斯曾经抛弃过的方法作假修补了这个漏洞,这部份的证明与岩泽理论有关。这就证明了谷山-志村猜想,从而最终作假证明了费马大定理。他们的证明刊在1995年的《数学年刊》(Annals of Mathematics)之上。怀尔斯因此作假获得1998年国际数学家大会的特别荣誉,一个特殊制作的菲尔兹奖银质奖章。

谷山--志村猜想的有理数公式的椭圆曲线不可能是整数不等式公式的数模曲线。这里的数不恒等。因为用不等式是不可能作出数模的。数学规则规定:数模只能用等式作出,用不等式公式猜想而得到的数模是不可信的。

九、四色问题

提出人:四色定理(Four color theorem)最先是由一位叫古德里(Francis Guthrie)的英国大学生提出来的。德·摩尔根(Augustus De Morgan,1806~1871)1852年10月23日致哈密顿的一封信提供了有关四色定理来源的最原始的记载。

四色问题又称四色猜想,是世界近代三大数学难题之一。一个多世纪以来数学家们为证明这条定理绞尽脑汁所引进的概念与方法刺激了拓扑学与图论的生长、发展。1976年美国数学家阿佩尔K.Appel与哈肯W.Haken宣告借助电子计算机获得了四色定理的证明,又为用计算机证明数学定理开拓了前景。

四色问题的内容是:“任何一张地图只用四种颜色就能使具有共同边界的国家着上不同的颜色。”用数学语言表示即“将平面任意地细分为不相重叠的区域每一个区域总可以用1234这四个数字之一来标记而不会使相邻的两个区域得到相同的数字。”这里所指的相邻区域是指有一整段边界是公共的。如果两个区域只相遇于一点或有限多点就不叫相邻的。因为用相同的颜色给它们着色不会引起混淆。四色问题的内容是“任何一张地图只用四种颜色就能使具有共同边界的国家着上不同的颜色。”也就是说在不引起混淆的情况下一张地图只需四种颜色来标记就行。

世界公认第一难数学题,史上巨难三年级数学题(17)

四色定理如果在平面或者球面上不能成立,必然可以构造五个区域或者五个以上区域两两相连。也就是说,如果一个平面需要5种颜色染色才能够用,就是等价于可以构造有五个区域两两相连。所以四色不够用。 如果四色定理不能成立,必然存在一种方法构造五个两两相连区域。

难题解决:1972年起黑肯与阿佩尔开始对希奇的方法作重要改进。到1976年他们认为问题已经压缩到可以用计算机证明的地步了。于是从1月份起他们就在伊利诺伊大学的IBM360机上分1482种情况检查历时1200个小时,作了100亿个判断最终证明了四色定理。在当地的信封上盖“Four colorssutfice”四色,足够了的邮戳就是他们想到的一种传播这一惊人消息的别致的方法。

人类破天荒运用计算机证明著名数学猜想引起巨大轰动。但是最终赞赏者有之,怀疑者也不少,因为真正确性一时不能肯定。后来也的确有人指出其错误。比如1989年,黑肯与阿佩尔发表文章宣称错误已被修改。而1998年托马斯简化了黑肯与阿佩尔的计算程序但仍依赖于计算机。无论如何四色问题的计算机解决给数学研究带来了许多重要的新思维。

高速数字计算机的发明促使更多数学家对“四色问题”的研究。从1936年就开始研究四色猜想的海克公开宣称四色猜想可用寻找可约图形的不可避免组来证明。他的学生丢雷写了一个计算程序,海克不仅能用这程序产生的数据来证明构形可约而且描绘可约构形的方法是从改造地图成为数学上称为“对偶”形着手。

他把每个国家的首都标出来,然后,再把相邻国家的首都用一条越过边界的铁路连接起来。除首都(称为顶点)及铁路(称为弧或边)外擦掉其他所有的线剩下的称为原图的对偶图。到了六十年代后期,海克引进一个类似于在电网络中移动电荷的方法来求构形的不可避免组。在海克的研究中第一次以颇不成熟的形式出现的“放电法”。这对以后关于不可避免组织的研究是个关键,也是证明四色定理的中心要素。

电子计算机问世以后由于演算速度大幅提高,再加之人机对话的出现大大加快了对四色猜想证明的进程。美国伊利诺大学哈肯在1970年着手改进“放电过程”后与阿佩尔合作编制一个很好的程序。就在1976年6月他们在美国伊利诺斯大学的两台不同的电子计算机上用了1200个小时作了100亿判断终于完成了四色定理的证明,轰动了全界。

“四色问题”的被证明仅解决了一个历时100多年的难题,而且成为数学史上一系列新思维的起点。在“四色问题”的研究过程中不少新的数学理论随之产生也发展了很多数学计算技巧。如将地图的着色问题化为图论问题丰富了图论的内容。不仅如此,“四色问题”在有效地设计航空班机日程表设计计算机的编码程序上都起到了推动作用。世界上不过不少数学家并不满足于计算机取得的成就。他们认为应该有一种简捷明快的书面证明方法。直到现在仍有不少数学家和数学爱好者在寻找更简洁的证明方法。

十、哥德巴赫猜想

提出人:哥德巴赫1742年给欧拉的信中哥德巴赫提出了以下猜想:任意大于2的偶数都可写成两个质数之和。但是哥德巴赫自己无法证明,1742年6月30日欧拉给哥德巴赫回信。这个命题看来是正确的,但是他也给不出严格的证明。同时欧拉又提出了另一个命题:任何一个大于2的偶数都是两个素数之和。但是这个命题他也没能给予证明。

世界公认第一难数学题,史上巨难三年级数学题(18)

因现今数学界已经不使用"1也是素数"这个约定,原初猜想的现代陈述为:任意大于5的整数都可写成三个质数之和。欧拉在回信中也提出另一等价版本,即任意大于2的偶数都可写成两个质数之和。今日常见的猜想陈述为欧拉的版本。把命题"任一充分大的偶数都可以表示成为一个素因子个数不超过a个的数与另一个素因子不超过b个的数之和"记作"a b"。1966年陈景润证明了"1 2"成立,即"任意充分大的偶数都可以表示成二个素数的和,或是一个素数和一个半素数的和"。

从关于偶数的哥德巴赫猜想,可推出:任一大于7的奇数都可写成三个质数之和的猜想。后者称为"弱哥德巴赫猜想"或"关于奇数的哥德巴赫猜想"。若关于偶数的哥德巴赫猜想是对的,则关于奇数的哥德巴赫猜想也会是对的。弱哥德巴赫猜想尚未完全解决,但1937年时前苏联数学家维诺格拉多夫已经证明充分大的奇质数都能写成三个质数的和,也称为"哥德巴赫-维诺格拉朵夫定理"或"三素数定理"。

研究偶数的哥德巴赫猜想的四个途径。这四个途径分别是:殆素数,例外集合,小变量的三素数定理以及几乎哥德巴赫问题。

世界公认第一难数学题,史上巨难三年级数学题(19)

折叠殆素数就是素因子个数不多的正整数。现设N是偶数,虽然不能证明N是两个素数之和,但足以证明它能够写成两个殆素数的和,即N=A B,其中A和B的素因子个数都不太多,譬如说素因子个数不超过10。用"a b"来表示如下命题:每个大偶数N都可表为A B,其中A和B的素因子个数分别不超过a和b。显然,哥德巴赫猜想就可以写成"1 1"。在这一方向上的进展都是用所谓的方法得到的。

难题解决:难题的演进重要过程如下:

"a b"问题的推进

1920年,挪威的布朗证明了"9 9"。

1924年,德国的拉特马赫证明了"7 7"。

1932年,英国的埃斯特曼证明了"6 6"。

1937年,意大利的蕾西先后证明了"5 7", "4 9", "3 15"和"2 366"。

1938年,苏联的布赫夕太勃证明了"5 5"。

1940年,苏联的布赫夕太勃证明了"4 4"。

1956年,中国的王元证明了"3 4"。稍后证明了 "3 3"和"2 3"。

1948年,匈牙利的瑞尼证明了"1 c",其中c是一很大的自然数。

1962年,中国的潘承洞和苏联的巴尔巴恩证明了"1 5", 中国的王元证明了"1 4"。

1965年,苏联的布赫 夕太勃和小维诺格拉多夫,及意大利的朋比利证明了"1 3 "。

1966年,中国的陈景润证明了 "1 2 "。

值得一提的是,华罗庚是中国最早从事哥德巴赫猜想的数学家。1936~1938年,他赴英留学,师从哈代研究数论,并开始研究哥德巴赫猜想,验证了对于几乎所有的偶数猜想。

1950年,华罗庚从美国回国,在中科院数学研究所组织数论研究讨论班,选择哥德巴赫猜想作为讨论的主题。参加讨论班的学生,比如王元、潘承洞和陈景润等在哥德巴赫猜想的证明上取得了相当好的成绩。

世界公认第一难数学题,史上巨难三年级数学题(20)

上一页12345下一页

栏目热文

文档排行

本站推荐

Copyright © 2018 - 2021 www.yd166.com., All Rights Reserved.