帕斯卡原理例题,举例帕斯卡原理在实际中的应用

首页 > 经验 > 作者:YD1662022-11-06 17:40:44

图2. 帕斯卡(Blaise Pascal,1623-1662)

帕斯卡是法国历史上早熟、早逝的天才。他是作家、神学家、哲学家,当然还是数学家、物理学家,甚至还是发明家、企业家。帕斯卡16岁上就撰写了关于射影几何的论文,18岁就发明了六位数的加法器。他是概率论的奠基人之一,首先用概期望值的概念作为选择的基础,由二项式展开得到了神奇的帕斯卡三角。他研究了几何的思想基础,分辨出两种不同的无穷,从而发明了积分和二重积分。他继续了托里切利(Evangelista Torricelli, 1608-1647)关于大气压的工作,预言高处气压必然降低;研究流体,提出了流体压强传递的帕斯卡原理;他论证真空的存在。帕斯卡是神学家、思想家,为了慈善筹款他创办了巴黎第一家马车公交公司,他的《致外省人信札》和《思想录》塑造了法语,也影响了法兰西的精神,其中又以《思想录》影响更巨。

帕斯卡的部分著作名录如下:

1. Essai pour les coniques(论圆锥曲线,1640)

2. Expériences nouvelles touchant le vide (关于真空的新实验,1647)

3. Récit de la grande expérience de l'équilibre des liqueurs(液体平衡大实验纪事,1648)

4. Traité de la pesanteur de la masse de l’air(论空气重量,1651-1653)

5. Traité du triangle arithmétique(算术三角,1654)

6. Les Provinciales(致外省人信札,1656-1657)

7. Éléments de géométrie(几何基础,1657)

8. De l’Esprit géométrique et de l’Art de persuader(几何的精神与说服的艺术1657)

9. Histoire de la roulette(轮盘赌历史,1658)

10. L’Art de persuader(说服的艺术,1660)

11. Pensées(思想录, 1669,遗著)

12. Abrégé de la vie de Jésus-Christ(耶稣基督小传,1840年发现,1846年出版)

有趣的是,帕斯卡的著作篇幅甚短。《论圆锥曲线》仅有1页,《关于真空的新实验》30页,《液体平衡大实验纪事》20页。比较著名的两本,《致外省人信札》的署名为Louis de Montalte,而《思想录》则是后人收集编纂的,有多种版本。

3. 帕斯卡的数学成就

帕斯卡的数学成就皆为开创性的,有概率论、投影几何、积分等,最著名的有得自二项式展开的算术三角,即帕斯卡三角。帕斯卡三角在我国称为杨辉三角,比帕斯卡要早得多,可惜没有后续发展。

帕斯卡与同时期的费马(Pierre de Fermat, 1607-1665)在法国开启了概率论研究。概率论是源于赌博的学问,16世纪意大利人对赌博的研究要更早一些。帕斯卡和费马在这方面的研究都没有太深入。值得一提的是,帕斯卡在和费马的通讯中引入了期望值(expected value, expectation value)的概念,并以此来证明人为什么要信仰上帝和过一种有道德的生活(所谓Pascal’s wager,即基于概率论证的选择)。帕斯卡和费马关于概率的计算为莱布尼茨的微分计算奠定了基础,这在牛顿那里也是一样的。一般微积分教科书不教微分技术上自概率计算的起源,也不教积分来自对物体重心的计算,我也不理解是为什么。

帕斯卡发明了射影几何。太阳底下的世界,发生投影是最自然不过的事情,然而物理系毕业的笔者却从没有被教过射影几何也是醉了。帕斯卡16岁上发表了只有一页的“论圆锥曲线“一文,留下了著名的帕斯卡定理,也叫六边形之谜定理(hexagrammum mysticum theorem)。此定理指出,在圆锥曲线上选六个点ABCDEF,相对顺序可任意安排,六边形ABCDEF三组对边的三个交点总在一条直线上。由圆内接六边形的表现能猜出这个定理,但帕斯卡没有给出这个定理的一般性证明。关于这个定理有许多巧妙的现代证明,中学生朋友们不妨关注一下。

帕斯卡三角得自二项式(a b)n的展开。应该容易得到,在古代中国、印度和阿拉伯的数学里都有。帕斯卡的“算术三角”一文写于1654年,可以推测他做出此发现应该是在更早的某个时期。在这篇文章中,帕斯卡引入了著名的数学归纳法(the principle of mathematical induction),这是一个让笔者非常痴迷的证明方法。1654年,帕斯卡做了一个神奇的梦,从此转而更多地投入宗教活动,减少了在数学研究方面的精力投入。

帕斯卡三角一目了然,但又是那种deceitfully simple(欺骗性地简单)的存在,不可小觑。帕斯卡三角内含多少奥秘,涉及多少数学,笔者才疏学浅不敢妄言,仅略举几例以飨读者。

例1. 帕斯卡三角中,每一行的系数会告诉我们n个对象分成两拨儿的各种可能性。比如,对于n=5,系数为1, 5, 10, 10, 5, 1, 分别对应分布(5, 0),(4,1),(3, 2),(2, 3),(1,4),(0, 5)的分布。这可以用于计算n张牌在两人手中的各种概率。当然啦,一个牌手应该会计算的是n张牌在另外三家手里各种可能分布的几率,高斯给出过这个问题的答案。提示,请试着展开(x y z)n,研究展开系数的规律。

例2. 帕斯卡三角中,每一行的系数加起来为2n。用2n除以系数,得到二项式分布。如果n足够大,就是高斯分布。

例3. 帕斯卡三角中隐藏着斐波那契数列。将帕斯卡三角排成图3的样子,将斜率为1的线所划过的数字相加,即得到斐波那契数列 1, 1, 2, 3, 5, 8, 13, 21…..。

例4. 帕斯卡三角是通往微分的桥梁。计算 (x Δx)n-xn,即获得了n为整数时函数xn的微分,

帕斯卡原理例题,举例帕斯卡原理在实际中的应用(5)

。牛顿将n推广到任意实数,比如-4/3,则获得了对函数x

a

的微分 (参见拙著《一念非凡》)。

关于帕斯卡三角里的数学,还有很多不为笔者所知晓的内容。我有种感觉,如果就着帕斯卡三角深入研究,应还有新的发现。

帕斯卡原理例题,举例帕斯卡原理在实际中的应用(6)

图3. 帕斯卡三角的一种可得到斐波那契数列的排列方式

帕斯卡对数学上遭遇的无限概念有了深入思考,他提出一条曲线所定义的面积可当作是无限多数量的无穷小面积之和。这就是后来被称为黎曼积分的思想啊。帕斯卡发现,若曲线是根据某个幂次的多项式画出的,则面积就和高一位幂次的一条曲线的值成正比。举例来说,曲线y=xn是个关于x的多项式,这条曲线在x∈(0, a)段所围的面积正比于an 1,帕斯卡这是发明了积分学。据说这是1658年5月的事情。用这个积分方法,帕斯卡解决了求摆线面积的问题。摆线是在直线上滚动的圆之边缘上的一点的轨迹,其形象会让人联想到拱桥的样子。1599年伽利略就有化摆线为方的尝试,即求摆线同作为基的直线所围的图形的面积。帕斯卡可能是受到了费马的提醒,计算一个重复单元的摆线之重心的位置。用他自己发明的积分方法帕斯卡成功地解决了这个问题。他接着还计算了阿基米德螺线的重心,进一步计算了阿基米德螺线绕轴转动所获得之旋转体的体积以及这个旋转体的重心。学过微积分的读者想必已经想到了,帕斯卡这是发现了二重积分。

帕斯卡对数学的贡献还在于他对运算机械化的尝试。18岁那年,为了将父亲从繁重的税务计算中解放出来,帕斯卡尝试发明计算机器。他用齿轮加弹簧的方式解决了十进制加法的进位问题,一开始是制造用于六位数计算的装置,在1642-1644年间制造了50多台样机,1645年还制作了一台能进行八位数运算的。某种意义上说,帕斯卡发现了计算器的原理。

4. 帕斯卡的物理成就

帕斯卡的物理学成就集中在对流体静力学和动力学方面的研究。他的研究对物理学的影响是如此之巨,以至于压强的单位定为帕斯卡,符号为Pa。在帕斯卡的时代,流体研究涉及的对象大致就是空气、水和水银(水银对物理学的发展太重要的了,气压的测定、超导的发现)。关于流体静压力问题,帕斯卡认识到,开放容器中的静止液体,其在液体中所产生的压强只和距离液面的高度差有关,而与液体容器的形状无关。为了证明这个思想,传说有帕斯卡水桶实验:将水桶上面密接一个细的管子,从管子顶端注水,可以看到当水面高到一定程度时,水桶被压漏了(图4)。在细的管子中注水用不了多少水,所以桶被压漏了不是简单地由水的重量引起的。进一步地,帕斯卡于1653年得出了关于液体压强的帕斯卡定律,也叫液压传递原理(the principle of transmission of fluid-pressure),用今天的话说,即不可压缩液体局域压强的变换可以传递到各处。基于液压传递原理,人类制造出了液压机,使得大型设备制造成为可能。强调一下,帕斯卡定律是个粗糙的表述,经不起更严格的推敲,但是对于工业应用来说,有现象的发现就够了。

帕斯卡原理例题,举例帕斯卡原理在实际中的应用(7)

图4. 帕斯卡水桶实验

1643年,意大利科学家托里切利成功测定了大气压。取一端开放的玻璃管灌满水银,将开放端没入一器皿所盛的水银中后倒置(防止气体进入),发现玻璃管中水银往下流出的过程最后会停止,且玻璃管中水银的液面要高出器皿中水银液面许多(图5)。以奥地利维也纳夏天的实验为准,水银柱高约为76 cm,这也是标准大气压说法的由来。受托里切利实验的启发,帕斯卡深入思考气压的问题。帕斯卡推测,如果空气有一定的重量,那么大气的高度就有个上限,则空气就应该越往上越稀薄。如果是这样,山顶的气压就比地面的要低,这是容易实验验证的。1648年9月19日,Florin Périer,即帕斯卡的姐夫,在他的再三央求下,登上了Puy-de-Dôme山,完成了对帕斯卡此一推断的实验验证。

帕斯卡原理例题,举例帕斯卡原理在实际中的应用(8)

上一页123下一页

栏目热文

文档排行

本站推荐

Copyright © 2018 - 2021 www.yd166.com., All Rights Reserved.