本文分享利用SPSSAU进行14个常用的统计假设检验的方法,分为以下五个部分:
一、正态性检验
正态性特质是很多分析方法的基础前提,如果不满足正态性特质,则应该选择其它的分析方法,因此在做某些分析时,需要先进行正态性检验。如果样本量大于50,则应该使用Kolmogorov-Smirnov检验结果,反之则使用Shapro-Wilk检验的结果。
常见的分析方法正态性特质要求归纳如下表(包括分析方法,以及需要满足正态性的分析项,如果不满足时应该使用的分析方法)。
SPSSAU整理分析步骤:
如果p 值大于0.05,则说明具有正态性特质,反之则说明数据没有正态性特质。
关于问卷研究数据的正态性特质:
如果是问卷研究,数据很难满足正态性特质,而实际研究中却也很少使用不满足正态性分析时的分析方法。
SPSSAU认为有以下三点原因:
① 参数检验的检验效能高于非参数检验,比如方差分析为参数检验,所以很多时候即使数据不满足正态性要求也使用方差分析
② 如果使用非参数检验,呈现出差异性,则需要对比具体对比差异性(但是非参数检验的差异性不能直接用平均值描述,这与实际分析需求相悖,因此有时即使数据不正态,也不使用非参数检验,或者Spearman相关系数等)
③ 理想状态下数据会呈现出正态性特质,但这仅会出现在理想状态,现实中的数据很难出现正态性特质(尤其是比如问卷数据)【可直接使用“直方图”直观展示数据正态性情况】。
SPSSAU操作
二、方差齐检验
如果要进行方差分析,需要满足方差齐性的前提条件,需要进行方差齐检验,其用于分析不同定类数据组别对定量数据时的波动情况是否一致。例如研究人员想知道三组学生的智商 波动情况是否一致(通常情况希望波动一致,即方差齐)。
分析步骤
判断p 值是否呈现出显著性(p <0.05),如果呈现出显著性,则说明不同组别数据波动不一致,即说明方差不齐;反之p 值没有呈现出显著性(p >0.05)则说明方差齐。
SPSSAU操作