1.基本思想
我们还是从问题开始讨论。这回提个接地气的问题——雄安新区批复前后对该地区房价是否有差异?
嗯,假设检验其实就是为了解决这类问题。
假设检验的基本思想——我们有样本,但是无法获得总体,需要对总体的分布形式或分布参数事先作出某种假设,然后根据样本观测值,运用统计分析的方法来检验这一假设是否正确。
分解开来,假设检验=假设 检验(或者假设检验)。
假设(hypothesis)——对总体的参数的具体数值(或分布形式)所作的陈述(总体参数包括总体均值、比例、 方差等,分析之前必需陈述)。
假设检验(hypothesis test)—先对总体的参数( 或分布形式) 提出某种假设,然后利用样本信息判断假设是否成立的过程(有参数检验和非参数检验;逻辑上运用反证法, 统计上依据小概率原理)。如图。
2.原假设和备择假设
从前面的介绍我们知道,假设检验的第一步是建立假设。那么假设分为两种(原假设和备择假设)。那么这二者具体又是什么呢?
- 原假设(null hypothesis)——原假设又称“ 0假设”,总是有符号 =, ≥ 或≤,表示为 H 0 H_0H0。是研究者想收集证据予以反对的假设(生产实践中常对应正常情形,如均值与设计一致);一般来说,原假设是一旦拒绝便要采取行动的假设。因此, 原假设总是“受到保护的假设” ,没有充分的证据是不能拒绝原假设的。例如,对一家信誉很好的工厂的产品进行检验,原假设一般是“ 产品合格”。
- 备择假设(alternative hypothesis)——研究者想收集证据予以支持的假设, 一旦发生就要采取行动, 是与原假设对立的假设,也称“研究假设”,总是有符号 ≠, > 或 <,表示为 H 1 H_1H1。
总结起来就是,原假设是统计学史上最悲催角色——它从一开始诞生,就是为了被科学家们发好人卡拒绝而存在的一个假设。备择假设才是科学家们追求的白富美。
搞明白了这两个假设,下一步我们做假设检验的时候,就要先提出假设了,这里给了一些提出假设的要点:
- 原假设和备择假设是一个完备事件组, 而且相互对立(在一项假设检验中, 原假设和备择假设必有一个成立, 而且只有一个成立)。
- 先确定备择假设, 再确定原假设。
- 等号“ =” 总是放在原假设上。
- 因研究目的不同, 对同一问题可能提出不同的假设( 也可能得出不同的结论)。
同时在实际应用中,我们有不同的需求,因此又有双侧检验和单侧检验的区分。
- 双侧检验——备择假设没有特定的方向性,并含有符号“=”的假设检验,称为双侧检验或双尾检验(two-tailed test)
- 单侧检验——备择假设具有特定的方向性,并含有符号“>”或“<”的假设检验,称为单侧检验或单尾检验(one-tailed test)。其中备择假设的方向为“<”,称为左侧检验,备择假设的方向为“>”,称为右侧检验。
原假设与备择假设形式:
所见即所得,用一张图来表示假设检验过程。
所以拒绝原假设的理由是假设检验中的小概率原理。那么什么是小概率?
- 在一次试验中, 一个几乎不可能发生的事件发生的概率。
- 在一次试验中小概率事件一旦发生, 我们就有理由拒绝原假设。
- 小概率由研究者事先确定。
所以拒绝H 0 H_0H0的理由就是