第一章 电化学体系:由两类不同导体组成,在电荷转移时,不可避免地伴随有物质变化的体系。 电极反应:两类导体上发生的氧化反应或还原反应。电化学反应:电化学体系中发生的、伴随有电荷转移的化学反应。 电化学科学:研究电子导电相(金属、半导体)和离子导电相(溶液、固体电解质)之间的界面上所发生的各种界面效应的科学。即伴有电现象发生的化学反应的科学。电极:电子导电相和离子导电相相接触,且在相界面上有电荷的转移,整个体系称为电极。 电极电位:电极体系中,两类导体界面所形成的相间电位,即电极材料和离子导体(溶液)的内电位差。 第二章 绝对电位:金属与溶液之间的内电位差的数值。参比电极:能作为基准的、电极电位保持恒定的电极。
添加图片注释,不超过 140 字(可选)
相对电位:将参比电极与被测电极组成一个原电池回路,所测出的电池端电压,叫做该被测电极的相对电位。习惯上直接称为电极电位,用 表示)标准氢电极:气体分压为101325Pa的氢气和离子活度为1的氢离子溶液所组成的电极体系。用 表示。氢标电位:相对于标准氢电极的电极电位。金属接触电位:相互接触的两个金属相之间的外电位差。形成原因:当两种金属接触时,由于电子逸出功不等,相互逸入的电子数目将不相等,因此在界面形成了双电层结构。这一双电层结构的电位差就是金属的接触电位。电子逸出功:电子离开金属逸入真空所需要的最低能量 液体接界电位相互接触的两个组成不同或浓度不同的电解质溶液相之间存在的相间电位。形成原因:两溶液相组成或浓度不同;溶质离子发生迁移;正、负离子运动速度不同;两相界面形成双电层产生电位差在恒压下原电池电动势对温度的偏导数称为原电池电动势的温度系数 吉布斯—亥姆荷茨方程应用于电池热力学的另一种表达式,可通过测
添加图片注释,不超过 140 字(可选)
求反应的焓变 电解池是依靠外电源迫使一定的电化学反应进行的装置。电池反应需要从外界输入能量,体系自由能变化
添加图片注释,不超过 140 字(可选)
腐蚀电池:只能导致金属材料破坏而不能对外作功的短路的原电池。电池反应所释放的化学能以热能的形式耗散,电池反应不能生成有价值的物质 浓差电池:原电池的电池总反应不是化学变化,而是一种物质从高浓度向低浓度状态的转移。 可逆电极:在平衡条件下工作的,电荷交换与物质交换都处于平衡的电极。可逆电极也就是平衡电极。 由不可逆的电极反应所建立的电极电位称为不可逆电位,或不平衡电位。其数值不能用能斯特公式计算,只能由实验测量。不可逆电位可以是稳定的,也可以是不稳定的,稳定的不可逆电位称为稳定电位。 水的热力学稳定性电位变正,电荷减少,氧化反应速度增大。电位变负,电荷增加,还原反应速度增大。 从电位—pH图中了解金属的腐蚀倾向稳定区:金属处于热力学稳定,不发生腐蚀。腐蚀区:金属的各种可溶性离子处于热力学稳定,金属发生腐蚀。钝化区:金属的各种难溶性氯化物、氧化物或难溶性盐处于热力学稳定,金属表面发生钝化免于腐蚀。 第三章 理想极化电极:在电极上不发生任何电极反应,外电源输入的全部电流都用于建立或改变界面结构和电极电位。 电毛细现象:界面张力随电极电位变化的现象。电毛细曲线:界面张力与电极电位的关系。