子的寿命足够长,其信号可以被NMR设备捕捉到。
Olah晚年多次回忆起1962年在纽约布鲁克黑文国家实验室举行的第九届反应机理学术会议
分别把他叫到一旁,警告这个来自工业界的年轻人:你的工作十有八九是错的。如果万一,你找到了一种能够直接测定碳正离子结构的实验方法,你一定要用它来证明2-降冰片基碳正离子的结构是非经典的(或者是经典的)!
Olah接受了两位大佬的挑战,但是运用超酸介质和NMR波谱技术观测2-降冰片基碳正离子
重排反应都被“冻结”了,因而谱图具有很高的分辨率。根据与其他模型化合物的NMR信号的对比,可以指认2-降冰片基碳正离子的非经典结构。
Olah还采用了其他先进的谱学技术,包括X-射线光电子能谱测定2-降冰片基碳正离子的信号,结果也支持非经典的结构。同年,IBM公司的科学家在5 K的极低温(约零下268摄氏度)下测定了2-降冰片基碳正离子的固态NMR信号,此时C1和C2原子的化学环境仍然完全相同(但是与C6原子的信号不同)。只有非经典碳正离子结构是这一结果的合理解释;如果像Brown设想的那样——此时仍然是两种互为镜像的经典三配位碳正离子处于快速平衡——那么翻越这种平衡的能垒将仅为0.2 kcal/mol,这是有机化学的基本常识所不允许的。
1993年,Schleyer(当时在德国纽伦堡大学工作)发表了关于2-降冰片基碳正离子的高精度量子化学计算结果,指出非经典碳正离子结构是该体系势能面的极小值,而不是Brown所认为的两种经典三配位碳正离子互变的过渡态。