式中C1为环境温度系数,C2为功率系数,C3为修正系数,由式(4)可知集中热路模型可有效描述功率器件的稳态温度。
2.2 热路模型参数估计方法
集中热路模型可视为等温体,一般由多种材料构成,包含接触热阻等,其参数难以通过理论计算得到。故采用参数估计的方法,当温升观测数据多于参数时,可视为参数的超定方程组。以式(4)为基础,通过多次观测得方程组,如式(5)所示。
3
充电机智能功率调节策略
本文以恒流快充模式运行的充电机作为调控对象。以上文所建模型及其参数为基础,构建充电机智能功率调节策略,如图3所示。该策略由功率调节外环和电流调节内环组成。
功率调节外环根据反馈功率Pi和环境温度Ta,计算最恶劣器件工作温度Tw,以最大限定温度T*为目标,计算误差温度ΔT,通过PID整定电流Iref,并通过电流限幅环节Imax给出目标电流Iaim。电流内环控制输出电流,限制充电机输入功率,从而实现智能功率控制。
该策略首先判断环境温度,在高温环境下误差温度ΔT≤0,经PID调整后Iaim减小,输入功率降低,功率器件温升被限制。在低温环境下,误差温度ΔT一直存在且较大,由于PID积分作用的结果,将使控制器的输出不断增加,一直达到输出极限值,出现积分饱和现象。为此消除此现象采用限幅法,使控制器输出信号被限制在控制范围内。
4
实验结果与分析
4.1 温升测试平台
为观测功率器件温升与验证控制策略,设计实验平台,如图4所示。充电机内置在高低温实验箱中,模拟环境温度变化。数采装置通过USB接口向微机传送Ta、Tw和Pi数据。微机通过USB/CAN通讯装置对充电机输入电流和功率调节。
4.2 温升最恶劣器件的测试
温升最恶劣器件的判定,主要观测功率器件的温升。图5给出了充电机输入功率为500 W,环境温度分别为20 ℃~50 ℃时的主要功率器件温升曲线。