用平移知识解决问题,用平移知识解决问题的方法

首页 > 生活常识 > 作者:YD1662024-02-03 06:30:25

用平移知识解决问题,用平移知识解决问题的方法(1)

为什么一些学生做了那么多数学题,还是不能把中考数学考好?

为什么一些学生数学基础掌握的非常扎实,但依然很难考取数学高分?

在很多人眼里,数学学习似乎只要多做题,分数自然会上去,但事实上却很少有人能这么“容易”做到。

这是为什么?

这要从中考的命题思路去解读,无论是中考还是高考,都是为高一级学校选拔人才。因此,中考除了考查大家知识点、概念、定理等等掌握的情况,更加考查大家对运用知识解决问题能力水平的高低等等。说白了,中考数学更加看重你的解题能力、思维水平等等。

数学学习,我们首先要扎实掌握好基础内容,通过解题提高解题能力,同时更要努力去提高自己的运用知识能力、思维能力、探索能力、创新能力等等。

如几何是初中数学最重要一块知识内容,相关数学问题能很好考查一个人空间想象能力、观察与实验能力、探索与实践能力等等。特别是平面几何的三大变换:轴对称、平移、旋转。这三大变换经常被当作重要考点,出现在很多综合问题、压轴题当中,考查考生的数学能力。

用平移知识解决问题,用平移知识解决问题的方法(2)

因此,今天我们就一起来讲讲平面几何的三大变换之一的平移变换。

平移变换一般是指在同一平面内,将一个图形(含点、线、面)整体按照某个直线方向移动一定的距离,这样的图形变换叫做图形的平移变换,简称平移。

从平移变换的概念,我们可以解读出这样四个重要信息:

1、平移的两个要素:一是图形平移的方向,二是图形平移的距离,这两个要素是图形平移的依据;

2、平移的方向不仅仅限于水平或竖直,还可以沿着某条直线平移;

3、图形的平移是指图形整体的平移,经过平移后的图形,与原图形相比,只改变了位置,而不改平移 变图形的大小,这个特征是得出图形平移的基本性质的依据;

4、要注意正确找出“对应线段,对应角”,从而正确表达基本性质的特征。

典型例题分析1:

如图,Rt△ABO的两直角边OA、OB分别在x轴的负半轴和y轴的正半轴上,O为坐标原点,A、B两点的坐标分别为(-3,0)、(0,4),抛物线y=2/3x2+bx+c经过点B,且顶点在直线x=5/2上.

(1)求抛物线对应的函数关系式;

(2)若把△ABO沿x轴向右平移得到△DCE,点A、B、O的对应点分别是D、C、E,当四边形ABCD是菱形时,试判断点C和点D是否在该抛物线上,并说明理由;

(3)在(2)的条件下,连接BD,已知对称轴上存在一点P使得△PBD的周长最小,求出P点的坐标;

(4)在(2)、(3)的条件下,若点M是线段OB上的一个动点(点M与点O、B不重合),过点M作∥BD交x轴于点N,连接PM、PN,设OM的长为t,△PMN的面积为S,求S和t的函数关系式,并写出自变量t的取值范围,S是否存在最大值?若存在,求出最大值和此时M点的坐标;若不存在,说明理由.

用平移知识解决问题,用平移知识解决问题的方法(3)

用平移知识解决问题,用平移知识解决问题的方法(4)

首页 1234下一页

栏目热文

文档排行

本站推荐

Copyright © 2018 - 2021 www.yd166.com., All Rights Reserved.