统计量t值大的意义,统计学中的t值怎么算

首页 > 时尚 > 作者:YD1662024-02-03 03:04:59

统计量t值大的意义,统计学中的t值怎么算(9)

T=2.32小于拒绝域临界值2.776,及检验统计量T落在非拒绝域(白色区域),故不拒绝原假设。换句话说,如果想拒绝原假设(得到两种测试方法有显著差异的结论),就需要检验统计量T值(绝对值)足够大,大到超过2.776,那么怎么做才能实现呢?通过后台公式我们能发现只需要:样本量足够大且/或合并标准差SP足够小。

统计量t值大的意义,统计学中的t值怎么算(10)

其实这是一个有悖逻辑的发现,因为如果真的如此的话,那我以后直接选择摆烂不就可以吗(样本量少抽一点,测量变异搞大点,这样越不容易得到有显著差异)。

统计量t值大的意义,统计学中的t值怎么算(11)

等价检验

从功能和实用意义上来讲,产品之间存在微小差异并不总是十分重要。例如,在200 mg的药物剂量中,相差1mg不会产生任何实际效应,那如果我想证明药物剂量不同对疗效是相同的或相近的,又该如何去验证呢?可不可以用显著性检验的方法(如t检验)?

显著性检验确定备择假设的方法是“想证明什么结论就把它放在备择假设上”,那能否把相等的结论放在备择假设上,如H0:μ≠μ0, H1: μ=μ0很遗憾,统计学中不可能处理这种“原假设是某个范围,而备择假设只是一个单点”的情况,只能处理备择假设为

H1:|μ-μ0|<△

H1: μ1<μ<μ2

其中μ1=μ0-△,μ2=μ0 △

这类检验问题称为等价检验(equivalence test)问题,也称等效性检验问题。其中(μ1,μ2)称为等价区间。它的原假设和备择假设为:

H0:μ<μ1或μ>μ2 H1:μ1≤μ≤μ2

等价检验实际上是双单侧假设检验(TOST),当左右两边的原假设同时被拒绝时才能认为原假设不成立。

统计量t值大的意义,统计学中的t值怎么算(12)

上一页12345下一页

栏目热文

文档排行

本站推荐

Copyright © 2018 - 2021 www.yd166.com., All Rights Reserved.