也就是说,代表这块面积的积分值等于1/3。
为了加深一下大家对这个积分式子的理解,我们再回顾一下求抛物线围成面积的过程:我们用无数个矩形把0到1之间分成了无穷多份,然后把所有的矩形面积都加起来。因为矩形的面积就是底乘以高,而这个高刚好就是函数的纵坐标y。
所以,当我用无数个矩形来逼近原面积的时候,每个矩形的底自然就变成了无穷小,这个无穷小的底就是上面的dx。而x²表示的就是函数的纵坐标,就是矩形的高,底(dx)和高(x²)相乘不就是在求面积么?你再看看这个式子,跟前面求面积的过程是不是一样的?
不过,我还是要再强调一次,这里把dx当作一个无穷小的底,把积分当作是求面积,这些都是微积分创立初期的看法。这种看法非常符合我们的直觉,但是逻辑上是不严密的。这种无穷小量dx也招致了很多人(比如我们熟悉的贝克莱大主教)对微积分的攻击,并且引发了第二次数学危机,这场危机一直到19世纪柯西等人完成了微积分的严密化之后才彻底化解。随着微积分的涅槃重生,我们对这些基本概念的看法也会发生根本的改变。
关于求面积的事情到这里就讲完了,“用一些图形去无限逼近曲线图形”的想法很早就有了,穷竭法在古希腊就很成熟了,中国魏晋时期的数学家刘徽使用割圆术去逼近圆周率也是这种思想。到了17世纪初,这些思想并没有什么太大的改变,由于这些解法比较复杂,又很难扩展,所以大家的关注度并不高。
没办法,因为打死人们也不会想到:破解这种求曲线面积(求积分)的关键,竟然藏在一个看起来跟它毫无关联的东西身上,这个东西就是微积分名字里的另一半:微分。当牛顿和莱布尼茨意识到积分和微分之间的内在关系之后,数学就迎来了一次空前的大发展。
好,关于求面积(积分)的事情这里就先告一段落,接下来我们就来看看微积分里的另一半:微分。
微分学的基本概念是导数,关于导数,我在麦克斯韦方程组的积分篇里讲过一次,在微分篇里又讲过一次(在那里还讲了升级版的偏导数)。这里它是主角,我再讲一次。
我们爬山的时候,山越陡越难爬;骑车的时候,路面的坡度越大越难骑。一个面的坡度越大,倾斜得越厉害,我们就越难上去,那么,我们该如何衡量这个倾斜程度呢?
在平面里画条一条直线,我们可以直观地看出这条直线的倾斜程度,而且还不难发现:不管在直线的什么地方,它的倾斜程度都是一样的。
所以,我们就可以用一个量来描述这整条直线的倾斜程度,这个概念就被形象地命名为斜率。
那么,一条直线的斜率要怎么计算呢?这个想法也很直观:建一个坐标系,看看直线在x轴改变了Δx时候,它在y轴的改变量Δy是多少。如果Δx是固定的,那么显然Δy越大,这条直线就斜得越厉害,斜率也就越大。