假设已经取得了两图像之间的单应,则可单应矩阵HH可以将两幅图像关联起来:
其中,(u1,v1,1)T(u1,v1,1)T表示图像1中的像点,(u2,v2,1)T(u2,v2,1)T是图像2中的像点,也就是可以通过单应矩阵H将图像2变换到图像1,该功能有很多实际的应用,例如图像的校正、对齐以及在SLAM中估计两个相机间的运动。并保持某些性质的不变性,显然具有保线性。
而在视觉slam中一般为同一相机在不同的位姿得到同一平面的图像有以下公式
以上公式如何推导而来呢?假设使用同一相机在不同的位姿下拍摄了同一平面,如图:
上图表示场景中的平面π在两相机的成像,设平面π在第一个相机坐标系下的单位法向量为N,其到第一个相机中心(坐标原点)的距离为d,则平面π可表示为: