单应矩阵求解方法:
(1)直接线性变换法。
(2)RANSAC-估计单应矩阵
平面的单应矩阵和对极约束的F矩阵的区别
两图像间的对极约束和场景的结构无关,可以理解对极约束对于任意场景结构的两幅图像都是成立的,约束是不能给出两幅图像上的像点的一一对应关系,但是可以给出点对应的必要条件,另一幅图像上对应的像点位于对应的对极线上。基础矩阵F描述的实际是一种点和直线的映射关系,而不是一种点对点的约束关系,并不能给出另一个点的确切位置。
平面间的单应矩阵,并不像对极约束完全不需要场景的结构信息,它对场景的结构有了要求,场景的点必须在同一个平面上,因此单应矩阵H也就能够对两图像上对应点的提供更多的约束,知道了某点在一幅图像的像点位置后,可以通过单应矩阵,求得其在另一幅图像中像点的确切位置。
单应矩阵的应用场景是相机只有旋转而无平移的时候,两视图的对极约束不成立,基础矩阵F为零矩阵,这时候需要使用单应矩阵H,场景中的点都在同一个平面上,可以使用单应矩阵计算像点的匹配点。 相机的平移距离相对于场景的深度较小的时候,也可以使用单应矩阵H。
本文内容推导大部分来自《视觉SLAM14讲》